Tidal turbines

Author(s):  
Sanaz Roshanmanesh ◽  
Farzad Hayati ◽  
Mayorkinos Papaelias
Keyword(s):  
2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Stefan Hoerner ◽  
Shokoofeh Abbaszadeh ◽  
Olivier Cleynen ◽  
Cyrille Bonamy ◽  
Thierry Maître ◽  
...  

Abstract State-of-the-art technologies for wind and tidal energy exploitation focus mostly on axial turbines. However, cross-flow hydrokinetic tidal turbines possess interesting features, such as higher area-based power density in array installations and shallow water, as well as a generally simpler design. Up to now, the highly unsteady flow conditions and cyclic blade stall have hindered deployment at large scales because of the resulting low single-turbine efficiency and fatigue failure challenges. Concepts exist which overcome these drawbacks by actively controlling the flow, at the cost of increased mechatronical complexity. Here, we propose a bioinspired approach with hyperflexible turbine blades. The rotor naturally adapts to the flow through deformation, reducing flow separation and stall in a passive manner. This results in higher efficiency and increased turbine lifetime through decreased structural loads, without compromising on the simplicity of the design. Graphic abstract


2021 ◽  
Vol 234 ◽  
pp. 109035
Author(s):  
Myriam Slama ◽  
Grégory Pinon ◽  
Charifa El Hadi ◽  
Michael Togneri ◽  
Benoît Gaurier ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 797
Author(s):  
Stefan Hoerner ◽  
Iring Kösters ◽  
Laure Vignal ◽  
Olivier Cleynen ◽  
Shokoofeh Abbaszadeh ◽  
...  

Oscillating hydrofoils were installed in a water tunnel as a surrogate model for a hydrokinetic cross-flow tidal turbine, enabling the study of the effect of flexible blades on the performance of those devices with high ecological potential. The study focuses on a single tip-speed ratio (equal to 2), the key non-dimensional parameter describing the operating point, and solidity (equal to 1.5), quantifying the robustness of the turbine shape. Both parameters are standard values for cross-flow tidal turbines. Those lead to highly dynamic characteristics in the flow field dominated by dynamic stall. The flow field is investigated at the blade level using high-speed particle image velocimetry measurements. Strong fluid–structure interactions lead to significant structural deformations and highly modified flow fields. The flexibility of the blades is shown to significantly reduce the duration of the periodic stall regime; this observation is achieved through systematic comparison of the flow field, with a quantitative evaluation of the degree of chaotic changes in the wake. In this manner, the study provides insights into the mechanisms of the passive flow control achieved through blade flexibility in cross-flow turbines.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1035 ◽  
Author(s):  
Magnus Harrold ◽  
Pablo Ouro

Tidal turbines are subject to highly dynamic mechanical loading through operation in some of the most energetic waters. If these loads cannot be accurately quantified at the design stage, turbine developers run the risk of a major failure, or must choose to conservatively over-engineer the device at additional cost. Both of these scenarios have consequences on the expected return from the project. Despite an extensive amount of research on the mechanical loading of model scale tidal turbines, very little is known from full-scale devices operating in real sea conditions. This paper addresses this by reporting on the rotor loads measured on a 400 kW tidal turbine. The results obtained during ebb tidal conditions were found to agree well with theoretical predictions of rotor loading, but the measurements during flood were lower than expected. This is believed to be due to a disturbance in the approaching flood flow created by the turbine frame geometry, and, to a lesser extent, the non-typical vertical flow profile during this tidal phase. These findings outline the necessity to quantify the characteristics of the turbulent flows at sea sites during the entire tidal cycle to ensure the long-term integrity of the deployed tidal turbines.


Proceedings ◽  
2018 ◽  
Vol 2 (22) ◽  
pp. 1368
Author(s):  
Beatriz F. Cal ◽  
Pedro Fraga

This study is focused on the early failure prediction of underwater Tidal Turbines. These types of turbines undergo strong torques due to ocean currents which also causes rapid changes in direction and speed which subjected to important loads and misalignments. The main objective of this study is therefore to analyse the response to the constant vibration produced by those misalignments and early appearance of cracks in this shaft.


2018 ◽  
Vol 163 ◽  
pp. 535-536
Author(s):  
S. Waldman ◽  
S. Bastón ◽  
R. Nemalidinne ◽  
A. Chatzirodou ◽  
V. Venugopal ◽  
...  
Keyword(s):  

Author(s):  
Stéphane Paboeuf ◽  
Laura-Mae Macadré ◽  
Pascal Yen Kai Sun

Tidal turbines are emerging technologies offering great potential for the harnessing of a renewable and predictable oceanic resource. However, exploitation at sea comes with significant design, installation, grid connection, and maintenance operations challenges. Consequently, guidelines and standards are required to ensure safety, quality, performance and accelerate tidal turbines development and commercialisation. Standardisation is also a necessity to support and improve safety and confidence of a wide range of Marine Renewable Energy (MRE) stakeholders such as designers, project operators, investors, insurers or final users. There are undergoing developments on guidelines, standards and certification systems within the International Electrotechnical Commission (IEC) Technical Committee TC 114 “Marine energy - Wave, tidal and other water current converters” and the IEC Renewable Energy “Marine Energy - Operational Management Committee” (IECRE ME – OMC). However, as the tidal energy concepts are only at the demonstration stage, only few guidelines and no dedicated certification scheme has been published so far within this organization, which guarantee an international, independent, non-governmental and consensus-based elaboration process. The aim of this paper is to present a proposal of certification methodology, developed by Bureau Veritas for the design assessment of current and tidal turbines, and its application to a French case study. This certification procedure was developed within the French research project Sabella D10 funded by ADEME and is published in the Bureau Veritas guideline NI603 “Current & Tidal Turbines”. The suggested certification procedure addresses prototype, component, type and project certification. Main objective, scope, intermediary steps to be completed and resulting certificates will be detailed for each certification scheme, as well as their interactions. This methodology will be illustrated by the case study on the Sabella D10 prototype, a French tidal turbine installed in 2015 in the Fromveur Passage, off Ushant Island. Sabella D10 is a 1 MW tidal turbine fully submerged laid on the seabed with a horizontal axis and 6 blades. It is the first French tidal turbine producing electricity and connected to the electrical network. The Sabella D10 case study will focus on prototype certification and computations performed for support structure and blades. The paper will describe the load cases that have been considered, the review procedure for the support structure and the blades design assessment, including description of a streamlined method for basic design and a detailed method for final design. In conclusion, the next steps will be introduced to continue the certification developments of tidal and current turbines.


2021 ◽  
Vol 925 ◽  
Author(s):  
Pablo Ouro ◽  
Takafumi Nishino

The efficiency of tidal stream turbines in a large array depends on the balance between negative effects of turbine-wake interactions and positive effects of bypass-flow acceleration due to local blockage, both of which are functions of the layout of turbines. In this study we investigate the hydrodynamics of turbines in an infinitely large array with aligned or staggered layouts for a range of streamwise and lateral turbine spacing. First, we present a theoretical analysis based on an extension of the linear momentum actuator disc theory for perfectly aligned and staggered layouts, employing a hybrid inviscid-viscous approach to account for the local blockage effect within each row of turbines and the viscous (turbulent) wake mixing behind each row in a coupled manner. We then perform large-eddy simulation (LES) of open-channel flow for 28 layouts of tidal turbines using an actuator line method with doubly periodic boundary conditions. Both theoretical and LES results show that the efficiency of turbines (or the power of turbines for a given bulk velocity) in an aligned array decreases as we reduce the streamwise turbine spacing, whereas that in a staggered array remains high and may even increase due to the positive local blockage effect (causing the local flow velocity upstream of each turbine to exceed the bulk velocity) if the lateral turbine spacing is sufficiently small. The LES results further reveal that the amplitude of wake meandering tends to decrease as we reduce the lateral turbine spacing, which leads to a lower wake recovery rate in the near-wake region. These results will help to understand and improve the efficiency of tidal turbines in future large arrays, even though the performance of real tidal arrays may depend not only on turbine-to-turbine interactions within the array but also on macro-scale interactions between the array and natural tidal currents, the latter of which are outside the scope of this study.


2020 ◽  
Author(s):  
Douglas Gillespie ◽  
Laura Palmer ◽  
Jamie Macaulay ◽  
Carol Sparling ◽  
Gordon Hastie

AbstractA wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.


2014 ◽  
Vol 8 (01) ◽  
pp. 1 ◽  
Author(s):  
James Joslin ◽  
Brian Polagye ◽  
Sandra Parker-Stetter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document