Combining Essential Oils with Antibiotics and other Antimicrobial Agents to Overcome Multidrug-Resistant Bacteria

Author(s):  
Kateryna Volodymyrivna Kon ◽  
Mahendra Kumar Rai
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Eshetu Gadisa ◽  
Hydar Usman

Background. Emerging of multidrug-resistant bacteria can compromise the effectiveness of antibiotics used to treat skin infections. Those bacteria imposed public health problems and questioning medical care in the 21st century. In this circumstance, essential oils of medicinal plants origin are supreme sources of structural and functionally divergent compounds, which inhibited the growth of common wound colonizing MRSA and ESBL producing P. aeruginosa. The aim of this study was to evaluate the combined antibacterial activity of essential oils extracted from Rumex abyssinicus, Cucumis pustulatus, and Discopodium penninervium against multidrug-resistant (MDR) isolates of skin ulcers. Methods. Essential oils (EOs) were extracted from aerial parts of R. abyssinicus, C. pustulatus, and D. penninervium with steam distillation. A mixture of each oil (1 : 1) was adsorbed to a disc and placed on Mueller Hinton Agar. Then, minimum zone of inhibition and bactericidal concentration of EOs was measured after incubeted for 18–24 hours at 37 °C. Their combined antibacterial effect was determined by the fractional inhibitory concentration index. Results. The antibacterial activity of mixed oil varied in their doses and bacteria species, of which a mixture of essential oil of R. abyssinicus and D. penninervium had inhibition zone (32 mm); its MIC and MBC values range from 1-2 μl/ml against MRSA. It had an inhibition zone (36 mm), MIC value 4 μl/ml, and MBC (8 μl/ml) against ESBL producing P. aeruginosa, whereas combined effects of R. abyssinicus and C. pustulatus had MIC values ranging from 2–8 μl/ml for E. coli and K. pneumoniae and 2 μl/ml for MRSA. There was a strong synergistic effect between R. abyssinicus and D. penninervium and promising antibacterial effect more specifically on MRSA and P. aeruginosa. Conclusion. This in vitro study of the combined effect of EOs has significant antibacterial activity on wound colonizing bacteria and reduces delaying wound healing as that of modern drugs tested in parallel. Hence, further structural elucidation of active compounds helps us to properly design or synthesis of topical antibiotics for wound care.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3642 ◽  
Author(s):  
Anna Duda-Madej ◽  
Joanna Kozłowska ◽  
Paweł Krzyżek ◽  
Mirosław Anioł ◽  
Alicja Seniuk ◽  
...  

New antimicrobial agents are needed to address infections caused by multidrug-resistant bacteria. Here, we are reporting novel O-alkyl derivatives of naringenin and their oximes, including novel compounds with a naringenin core and O-hexyl chains, showing activity against clinical strains of clarithromycin-resistant Helicobacter pylori, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and beta-lactam-resistant Acinetobacter baumannii and Klebsiella pneumoniae. The minimum inhibitory concentrations (MICs), which provide a quantitative measure of antimicrobial activity, were in the low microgram range for the selected compounds. Checkerboard assays for the most active compounds in combination with antibiotics revealed interactions that varied from synergistic to neutral.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3862
Author(s):  
Latifah Abdullah Alshabanah ◽  
Mohamed Hagar ◽  
Laila A. Al-Mutabagani ◽  
Ghada M. Abozaid ◽  
Salwa M. Abdallah ◽  
...  

Biodegradable nanofibrous hybrid membranes of polyvinyl alcohol (PVA) with ZnO and CuO nanoparticles were manufactured and characterized, and their anti-COVID-19 and anti-multidrug resistant bacteria activities were also evaluated. The morphological structures of the prepared PVA composites nanofibers were observed by scanning electron microscope (SEM), which revealed a homogenous pattern of the developed nanofibers, with an average fibrous diameter of 200–250 nm. Moreover, the results of the SEM showed that the fiber size changed with the type and the concentration of the metal oxide. Moreover, the antiviral and antibacterial potential capabilities of the developed nanofibrous membranes were tested in blocking the viral fusion of SARS-COV-2, as a representative activity for COVID-19 deactivation, as well as for their activity against a variety of bacterial strains, including multi-drug resistant bacteria (MDR). The results revealed that ZnO loaded nanofibers were more potent antiviral agents than their CuO analogues. This antiviral action was attributed to the fact that inorganic metallic compounds have the ability to extract hydrogen bonds with viral proteins, causing viral rupture or morphological changes. On the other hand, the anti-multi-drug resistant activity of the prepared nanofibers was also evaluated using two techniques; the standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions and the standard test method for determining the activity of incorporated antimicrobial agents in polymeric or hydrophobic materials. Both techniques proved the superiority of the ZnO loaded nanofibers over the CuO loaded fibers. The results of the antiviral and antibacterial tests showed the effectiveness of such nanofibrous formulas, not only for medical applications, but also for the production of personal protection equipment, such as gowns and textiles.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dong-Hyun Kim ◽  
Jung-Hyun Kim

The emergence of multidrug-resistant bacteria in companion animals is an increasing concern in view of the concept of One Health. The antimicrobials linezolid (LZD) and tigecycline (TGC) are effective against multidrug-resistant bacteria isolated from humans; however, thus far, no previous study has evaluated the efficacy of these drugs against bacteria isolated from companion animals. This study aimed to evaluate the efficacy of LZD and TGC against bacteria that were isolated from companion dogs and showed resistance to all classes of antimicrobial agents. Clinical samples (auditory channel, eye, skin, and urine) were collected from dogs that visited the Veterinary Medical Teaching Hospital of Konkuk University (Seoul, South Korea) from October 2017 to September 2020. In total, 392 bacterial isolates were obtained, of which 85 were resistant to all classes of antimicrobial agents tested and were, therefore, considered potentially pan-drug resistant (PDR). The susceptibility of isolates to LZD and TGC was determined by the disk diffusion method and interpreted using the Clinical Laboratory Standards Institute guidelines. In total, 95.6% (43/45) and 97.8% (44/45) of gram-positive isolates were susceptible to LZD and TGC, respectively, whereas 82.5% (33/40) of gram-negative isolates were sensitive to TGC. In conclusion, both agents showed favorable efficacy, with the susceptibility rates for all potential PDR bacteria, except Pseudomonas spp., ranging from 72.7 to 100%. Thus, these drugs may serve as excellent antimicrobial options for veterinary medicine in the future.


Sign in / Sign up

Export Citation Format

Share Document