Microalgal Systems Biology Through Genome-Scale Metabolic Reconstructions for Industrial Applications

Author(s):  
Seong-Joo Hong ◽  
Choul-Gyun Lee
2020 ◽  
Vol 8 (12) ◽  
pp. 1849
Author(s):  
Yujin Jeong ◽  
Sang-Hyeok Cho ◽  
Hookeun Lee ◽  
Hyung-Kyoon Choi ◽  
Dong-Myung Kim ◽  
...  

Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for enhanced production of industrially valued compounds, including secondary metabolites and non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and systems biology approaches for advanced metabolic engineering of cyanobacteria.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 221
Author(s):  
Ozlem Altay ◽  
Cheng Zhang ◽  
Hasan Turkez ◽  
Jens Nielsen ◽  
Mathias Uhlén ◽  
...  

Burkholderia cenocepacia is among the important pathogens isolated from cystic fibrosis (CF) patients. It has attracted considerable attention because of its capacity to evade host immune defenses during chronic infection. Advances in systems biology methodologies have led to the emergence of methods that integrate experimental transcriptomics data and genome-scale metabolic models (GEMs). Here, we integrated transcriptomics data of bacterial cells grown on exponential and biofilm conditions into a manually curated GEM of B. cenocepacia. We observed substantial differences in pathway response to different growth conditions and alternative pathway susceptibility to extracellular nutrient availability. For instance, we found that blockage of the reactions was vital through the lipid biosynthesis pathways in the exponential phase and the absence of microenvironmental lysine and tryptophan are essential for survival. During biofilm development, bacteria mostly had conserved lipid metabolism but altered pathway activities associated with several amino acids and pentose phosphate pathways. Furthermore, conversion of serine to pyruvate and 2,5-dioxopentanoate synthesis are also identified as potential targets for metabolic remodeling during biofilm development. Altogether, our integrative systems biology analysis revealed the interactions between the bacteria and its microenvironment and enabled the discovery of antimicrobial targets for biofilm-related diseases.


2012 ◽  
Vol 7 (9) ◽  
pp. 1147-1155 ◽  
Author(s):  
Christoph Knuf ◽  
Jens Nielsen

Author(s):  
Hannah Elizabeth Hill ◽  
Salendra Singh ◽  
Kristy Miskimen ◽  
Paula Silverman ◽  
Jill Barnholtz-Sloan ◽  
...  

2019 ◽  
Vol 78 (3) ◽  
pp. 290-304 ◽  
Author(s):  
J. Bernadette Moore

Non-alcoholic fatty liver disease (NAFLD) is now a major public health concern with an estimated prevalence of 25–30% of adults in many countries. Strongly associated with obesity and the metabolic syndrome, the pathogenesis of NAFLD is dependent on complex interactions between genetic and environmental factors that are not completely understood. Weight loss through diet and lifestyle modification underpins clinical management; however, the roles of individual dietary nutrients (e.g. saturated and n-3 fatty acids; fructose, vitamin D, vitamin E) in the pathogenesis or treatment of NAFLD are only partially understood. Systems biology offers valuable interdisciplinary methods that are arguably ideal for application to the studying of chronic diseases such as NAFLD, and the roles of nutrition and diet in their molecular pathogenesis. Although present in silico models are incomplete, computational tools are rapidly evolving and human metabolism can now be simulated at the genome scale. This paper will review NAFLD and its pathogenesis, including the roles of genetics and nutrition in the development and progression of disease. In addition, the paper introduces the concept of systems biology and reviews recent work utilising genome-scale metabolic networks and developing multi-scale models of liver metabolism relevant to NAFLD. A future is envisioned where individual genetic, proteomic and metabolomic information can be integrated computationally with clinical data, yielding mechanistic insight into the pathogenesis of chronic diseases such as NAFLD, and informing personalised nutrition and stratified medicine approaches for improving prognosis.


Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1220-1223 ◽  
Author(s):  
Roger L. Chang ◽  
Kathleen Andrews ◽  
Donghyuk Kim ◽  
Zhanwen Li ◽  
Adam Godzik ◽  
...  

Genome-scale network reconstruction has enabled predictive modeling of metabolism for many systems. Traditionally, protein structural information has not been represented in such reconstructions. Expansion of a genome-scale model of Escherichia coli metabolism by including experimental and predicted protein structures enabled the analysis of protein thermostability in a network context. This analysis allowed the prediction of protein activities that limit network function at superoptimal temperatures and mechanistic interpretations of mutations found in strains adapted to heat. Predicted growth-limiting factors for thermotolerance were validated through nutrient supplementation experiments and defined metabolic sensitivities to heat stress, providing evidence that metabolic enzyme thermostability is rate-limiting at superoptimal temperatures. Inclusion of structural information expanded the content and predictive capability of genome-scale metabolic networks that enable structural systems biology of metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sander Y. A. Rodenburg ◽  
Michael F. Seidl ◽  
Dick de Ridder ◽  
Francine Govers

Metabolism is the set of biochemical reactions of an organism that enables it to assimilate nutrients from its environment and to generate building blocks for growth and proliferation. It forms a complex network that is intertwined with the many molecular and cellular processes that take place within cells. Systems biology aims to capture the complexity of cells, organisms, or communities by reconstructing models based on information gathered by high-throughput analyses (omics data) and prior knowledge. One type of model is a genome-scale metabolic model (GEM) that allows studying the distributions of metabolic fluxes, i.e., the “mass-flow” through the network of biochemical reactions. GEMs are nowadays widely applied and have been reconstructed for various microbial pathogens, either in a free-living state or in interaction with their hosts, with the aim to gain insight into mechanisms of pathogenicity. In this review, we first introduce the principles of systems biology and GEMs. We then describe how metabolic modeling can contribute to unraveling microbial pathogenesis and host–pathogen interactions, with a specific focus on oomycete plant pathogens and in particular Phytophthora infestans. Subsequently, we review achievements obtained so far and identify and discuss potential pitfalls of current models. Finally, we propose a workflow for reconstructing high-quality GEMs and elaborate on the resources needed to advance a system biology approach aimed at untangling the intimate interactions between plants and pathogens.


2014 ◽  
Vol 15 (2) ◽  
pp. 130-159 ◽  
Author(s):  
Ali Najafi ◽  
Gholamreza Bidkhori ◽  
Joseph Bozorgmehr ◽  
Ina Koch ◽  
Ali Masoudi-Nejad

2014 ◽  
Author(s):  
Bernhard O. Palsson ◽  
Ali Ebrahim ◽  
Steve Federowicz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document