Constitutive Modeling of Soft Tissues

Author(s):  
Michele Marino
Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2319 ◽  
Author(s):  
David González ◽  
Alberto García-González ◽  
Francisco Chinesta ◽  
Elías Cueto

We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent data is found. We focus on two aspects that complicate the problem, namely, the presence of an important dispersion in the experimental results and the need for a rigorous compliance to thermodynamic settings. To address these difficulties, we propose to use, respectively, Topological Data Analysis techniques and a regression over the so-called General Equation for the Nonequilibrium Reversible-Irreversible Coupling (GENERIC) formalism (M. Grmela and H. Ch. Oettinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620, 1997). This allows us, on one hand, to unveil the true “shape” of the data and, on the other, to guarantee the fulfillment of basic principles such as the conservation of energy and the production of entropy as a consequence of viscous dissipation. Examples are provided over pseudo-experimental and experimental data that demonstrate the feasibility of the proposed approach.


Author(s):  
Wei Yong Gu ◽  
Hai Yao

Based on the experimental results of electrical conductivity and hydraulic permeability, a new constitutive model for relative diffusivity (D/Do) of solutes in gels and tissues was developed. This model could predict the functional relationship between solute diffusivity and tissue deformation. This model could also quantitatively predict the effect of solute size on solute diffusivity in tissues. This study is important for the understanding of nutritional transport in cartilaginous tissues. It is also useful for the prediction of nutrition levels in tissue constructs during growth.


Author(s):  
A. Fallah ◽  
M.T. Ahmadian ◽  
K. Firozbakhsh ◽  
M.M. Aghdam

2013 ◽  
Vol 554-557 ◽  
pp. 1715-1728 ◽  
Author(s):  
Zied Oueslati ◽  
Mohamed Rachik ◽  
Marie France Lacrampe

For several years, modeling hyperelasticity has been focused on and leaded to a large choice of strain energy potential forms. Since then, many advances have been made in constitutive modeling of rubber like materials. These models are nowadays widely used in many applications like constitutive modeling of soft tissues in biomechanics problems or plastic thermoforming simulation. In this work, constitutive modeling of TPO sheets for thermoforming application is considered. Experimental measurements have shown that the material is transversely isotropic. To take into account this anisotropy, we implemented some new transversally isotropic hyperelastic constitutive models in Abaqus software with the help of user subroutines. Furthermore, different particular forms of the strain energy potential are investigated and their hyperelatic constants are fitted to the measurement data from tensile tests performed in different directions. Based on the results of these investigations, a transversely isotropic form of the energy potential derived from the Yeoh constitutive model is adopted and several tests are analyzed for validation purpose. The chosen model is a good compromise that achieves accurate predictions with limited amount of tests and limited identification efforts. Another key finding of this work is the influence of the anisotropy on the thermoformed parts.


Author(s):  
C.A. Baechler ◽  
W. C. Pitchford ◽  
J. M. Riddle ◽  
C.B. Boyd ◽  
H. Kanagawa ◽  
...  

Preservation of the topographic ultrastructure of soft biological tissues for examination by scanning electron microscopy has been accomplished in the past by using lengthy epoxy infiltration techniques, or dehydration in ethanol or acetone followed by air drying. Since the former technique requires several days of preparation and the latter technique subjects the tissues to great stress during the phase change encountered during air-drying, an alternate rapid, economical, and reliable method of surface structure preservation was developed. Turnbill and Philpott had used a fluorocarbon for the critical point drying of soft tissues and indicated the advantages of working with fluids having both moderately low critical pressures as well as low critical temperatures. Freon-116 (duPont) which has a critical temperature of 19. 7 C and a critical pressure of 432 psi was used in this study.


Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


Sign in / Sign up

Export Citation Format

Share Document