Neuroprotective Effects of Melatonin and Omega-3 on the Central Nervous System Exposed to Electromagnetic Fields in the Pre- and Postnatal Periods

Author(s):  
Kıymet Kübra Yurt ◽  
Elfide Gizem Kıvrak ◽  
Gamze Altun ◽  
Abit Aktas ◽  
Arife Ahsen Kaplan ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandra Cadete Martini ◽  
Stefânia Forner ◽  
Allisson Freire Bento ◽  
Giles Alexander Rae

Many diseases of the central nervous system are characterized and sometimes worsened by an intense inflammatory response in the affected tissue. It is now accepted that resolution of inflammation is an active process mediated by a group of mediators that can act in synchrony to switch the phenotype of cells, from a proinflammatory one to another that favors the return to homeostasis. This new genus of proresolving mediators includes resolvins, protectins, maresins, and lipoxins, the first to be discovered. In this short review we provide an overview of current knowledge into the cellular and molecular interactions of lipoxins in diseases of the central nervous system in which they appear to facilitate the resolution of inflammation, thus exerting a neuroprotective action.


2016 ◽  
Vol 22 (6) ◽  
pp. 701-708 ◽  
Author(s):  
Thea Magrone ◽  
Matteo Antonio Russo ◽  
Emilio Jirillo

Immune cells actively participate to the central nervous system (CNS) injury either damaging or protecting neural tissue with release of various mediators. Residential microglia and monocyte-derived macrophages play a fundamental role within the injured CNS and, here, special emphasis will be placed on M1 and M2 macrophages for their different functional activities. On the other hand, peripheral T regulatory (Treg) cells exert antiinflammatory activities in the diseased host. In this respect, activation of Treg cells by nutraceuticals may represent a novel approach to treat neuroinflammation. Omega-3 fatty acids and polyphenols will be described as substances endowed with antioxidant and anti-inflammatory activities. However, taking into account that Treg cells act in the later phase of CNS injury, favoring immune suppression, manipulation of host immune system with both substances requires caution to avoid undesired side effects.


Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 91 ◽  
Author(s):  
Francesca Gado ◽  
Maria Digiacomo ◽  
Marco Macchia ◽  
Simone Bertini ◽  
Clementina Manera

Recent findings highlight the emerging role of the endocannabinoid system in the control of symptoms and disease progression in multiple sclerosis (MS). MS is a chronic, immune-mediated, demyelinating disorder of the central nervous system with no cure so far. It is widely reported in the literature that cannabinoids might be used to control MS symptoms and that they also might exert neuroprotective effects and slow down disease progression. This review aims to give an overview of the principal cannabinoids (synthetic and endogenous) used for the symptomatic amelioration of MS and their beneficial outcomes, providing new potentially possible perspectives for the treatment of this disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Rodolfo Pinto-Almazán ◽  
Julia J. Segura-Uribe ◽  
Eunice D. Farfán-García ◽  
Christian Guerra-Araiza

Hormone replacement therapy (HRT) increases the risk of endometrial and breast cancer. A strategy to reduce this incidence is the use of tibolone (TIB). The aim of this paper was to address the effects of TIB on the central nervous system (CNS). For the present review, MEDLINE (via PubMed), LILACS (via BIREME), Ovid Global Health, SCOPUS, Scielo, and PsycINFO (ProQuest Research Library) electronic databases were searched for the results of controlled clinical trials on peri- and postmenopausal women published from 1990 to September 2016. Also, this paper reviews experimental studies performed to analyze neuroprotective effects, cognitive deficits, neuroplasticity, oxidative stress, and stroke using TIB. Although there are few studies on the effect of this hormone in the CNS, it has been reported that TIB decreases lipid peroxidation levels and improves memory and learning. TIB has important neuroprotective effects that could prevent the risk of neurodegenerative diseases in postmenopausal women as well as the benefits of HRT in counteracting hot flashes, improving mood, and libido. Some reports have found that TIB delays cognitive impairment in various models of neuronal damage. It also modifies brain plasticity since it acts as an endocrine modulator regulating neurotransmitters, Tau phosphorylation, and decreasing neuronal death. Finally, its antioxidant effects have also been reported in different animal models.


2006 ◽  
Vol 27 (6) ◽  
pp. 487-493 ◽  
Author(s):  
Amâncio R. Ferreira ◽  
Fernanda Bonatto ◽  
Matheus Augusto de Bittencourt Pasquali ◽  
Manuela Polydoro ◽  
Felipe Dal-Pizzol ◽  
...  

2017 ◽  
Vol 16 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Azadeh Manayi ◽  
Sahar Omidpanah ◽  
Davide Barreca ◽  
Silvana Ficarra ◽  
Maria Daglia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document