Vitamin D, oxidative stress, and diabetes: crossroads for new therapeutic approaches

Diabetes ◽  
2020 ◽  
pp. 385-395 ◽  
Author(s):  
Bahareh Nikooyeh ◽  
Razieh Anari ◽  
Tirang R. Neyestani
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Laura Dumitrescu ◽  
Iulia Popescu-Olaru ◽  
Liviu Cozma ◽  
Delia Tulbă ◽  
Mihail Eugen Hinescu ◽  
...  

The gut-brain axis is increasingly recognized as an important pathway of communication and of physiological regulation, and gut microbiota seems to play a significant role in this mutual relationship. Oxidative stress is one of the most important pathogenic mechanisms for both neurodegenerative diseases, such as Alzheimer’s or Parkinson’s, and acute conditions, such as stroke or traumatic brain injury. A peculiar microbiota type might increase brain inflammation and reactive oxygen species levels and might favor abnormal aggregation of proteins. Reversely, brain lesions of various etiologies result in alteration of gut properties and microbiota. These recent hypotheses could open a door for new therapeutic approaches in various neurological diseases.


Author(s):  
Joana Magalhaes ◽  
Emilie Tresse ◽  
Patrick Ejlerskov ◽  
Erling Hu ◽  
Yawei Liu ◽  
...  

AbstractFamilial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNβ or IFNAR1, the receptor for IFNα/β, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNβ-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNβ-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD. With meta-analysis of GWASs, we identified sequence variants in IFNβ-IFNAR-related genes in sPD patients. Furthermore, sPDD patients expressed higher levels of PIAS2 mRNA and protein in neurons. To determine its function in brain, we overexpressed PIAS2 under a neuronal promoter, alone or with human α-synuclein, in the brains of mice, which caused motor and cognitive impairments and correlated with intraneuronal phosphorylated (p)α-synuclein accumulation and dopaminergic neuron loss. Ectopic expression of neuronal PIAS2 blocked mitophagy, increased the accumulation of senescent mitochondrial and oxidative stress, as evidenced by excessive oxDJ1 and 8OHdG, by inactivating ERK1/2-P53 signaling. Conversely, PIAS2 knockdown rescued the clinicopathological manifestations of PDD in Ifnb–/– mice on restoring mitochondrial homeostasis, oxidative stress, and pERK1/2-pP53 signaling. The regulation of JAK-STAT2-PIAS2 signaling was crucial for neurite outgrowth and neuronal survival and excitability and thus might prevent cognitive impairments. Our findings provide insights into the progression of sPD and dementia and have implications for new therapeutic approaches.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 802 ◽  
Author(s):  
Andrea Cucchi ◽  
Roberto Ramoni ◽  
Giuseppina Basini ◽  
Simona Bussolati ◽  
Fausto Quintavalla

Oxidative stress is a prominent event in several acute and chronic diseases including neoplasia. Although its direct involvement in carcinogenesis still remains to be clearly defined, a deeper knowledge of oxidative stress in oncologic patients could help to monitor their clinical outcome and to develop new therapeutic approaches. Therefore, the present study was undertaken to explore redox status in blood of neoplastic dogs affected either by multicentric lymphoma or by primary cutaneous mastocytoma. Superoxide anion (O2 •−), nitric oxide (NO) and hydroperoxides (ROOH) were measured. Detoxifying enzyme superoxide dismutase (SOD) and total non-enzymatic antioxidant capacity (ferric reducing-antioxidant power (FRAP)) were assessed. The oxidative stress index (OSi) both for enzymatic (OSiE) and non-enzymatic (OSiNE) scavengers were evaluated. Both pathologies, showed a reduced NO generation, while O2 •− levels were decreased only in mastocytoma. The oxidative stress indexes showed a significant decrease in mastocytoma patients, only for OSiE.


Rheumatology ◽  
2016 ◽  
Vol 55 (12) ◽  
pp. 2096-2108 ◽  
Author(s):  
Chary López-Pedrera ◽  
Nuria Barbarroja ◽  
Yolanda Jimenez-Gomez ◽  
Eduardo Collantes-Estevez ◽  
Ma Angeles Aguirre ◽  
...  

Author(s):  
Hasan Haci Yeter ◽  
Berfu Korucu ◽  
Elif Burcu Bali ◽  
Ulver Derici

Abstract. Background: The pathophysiological basis of chronic kidney disease and its complications, including cardiovascular disease, are associated with chronic inflammation and oxidative stress. We investigated the effects of active vitamin D (calcitriol) and synthetic vitamin D analog (paricalcitol) on oxidative stress in hemodialysis patients. Methods: This cross-sectional study was composed of 83 patients with a minimum hemodialysis vintage of one year. Patients with a history of any infection, malignancy, and chronic inflammatory disease were excluded. Oxidative markers (total oxidant and antioxidant status) and inflammation markers (C-reactive protein and interleukin-6) were analyzed. Results: A total of 47% (39/83) patients were using active or analog vitamin D. Total antioxidant status was significantly higher in patients with using active or analog vitamin D than those who did not use (p = 0.006). Whereas, total oxidant status and oxidative stress index were significantly higher in patients with not using vitamin D when compared with the patients who were using vitamin D preparation (p = 0.005 and p = 0.004, respectively). On the other hand, total antioxidant status, total oxidant status, and oxidative stress index were similar between patients who used active vitamin D or vitamin D analog (p = 0.6; p = 0.4 and p = 0.7, respectively). Conclusion: The use of active or selective vitamin D analog in these patients decreases total oxidant status and increases total antioxidant status. Also, paricalcitol is as effective as calcitriol in decreasing total oxidant status and increasing total antioxidant status in patients with chronic kidney disease.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 32-37 ◽  
Author(s):  
Karlheinz Peter ◽  
Wolfgang Kübler ◽  
Johannes Ruef ◽  
Thomas K. Nordt ◽  
Marschall S. Runge ◽  
...  

SummaryThe initiating event of atherogenesis is thought to be an injury to the vessel wall resulting in endothelial dysfunction. This is followed by key features of atherosclerotic plaque formation such as inflammatory responses, cell proliferation and remodeling of the vasculature, finally leading to vascular lesion formation, plaque rupture, thrombosis and tissue infarction. A causative relationship exists between these events and oxidative stress in the vessel wall. Besides leukocytes, vascular cells are a potent source of oxygen-derived free radicals. Oxidants exert mitogenic effects that are partially mediated through generation of growth factors. Mitogens, on the other hand, are potent stimulators of oxidant generation, indicating a putative self-perpetuating mechanism of atherogenesis. Oxidants influence the balance of the coagulation system towards platelet aggregation and thrombus formation. Therapeutic approaches by means of antioxidants are promising in both experimental and clinical designs. However, additional clinical trials are necessary to assess the role of antioxidants in cardiovascular disease.


2011 ◽  
Vol 152 (39) ◽  
pp. 1552-1559 ◽  
Author(s):  
Katalin Dankó ◽  
Melinda Vincze

Inflammatory myopathies are chronic, immune-mediated diseases characterized with progressive proximal muscle weakness. They encompass a variety of syndromes with protean manifestations. The aims of therapy are to increase muscle strength, prevent the development of contractures, and to manage the systemic manifestations of the disease. This is a complex treatment which requires routine and wide knowledge. The most important task is to recognize the disease and guide the patient to immunologic center. Although the first line of therapy continues to include corticosteroids, there are a multitude of agents available for treating patients with myositis. There are several different immunosuppressive agents which may be applied alone or in combination with each other, as well as an increasing number of novel and exciting biologic agents targeting molecules participating in the pathogenesis of inflammatory myopathy. Physiotherapy and rehabilitation in the remission period may significantly improve the functional outcome of patients with these disorders. Orv. Hetil., 2011, 152, 1552–1559.


Sign in / Sign up

Export Citation Format

Share Document