Performance evaluation of cellulose nanofiber reinforced polypropylene biocomposites for automotive applications

Author(s):  
Mohd Nor Faiz Norrrahim ◽  
T.A.T. Yasim-Anuar ◽  
M.A. Jenol ◽  
N. Mohd Nurazzi ◽  
S.M. Sapuan ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1064
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Mohd Ali Hassan ◽  
Nor Azowa Ibrahim ◽  
...  

Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55–56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.


Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Noor Azilah Mohd Kasim ◽  
Victor Feizal Knight ◽  
Norhana Abdul Halim ◽  
Noor Aisyah Ahmad Shah ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 1623 ◽  
Author(s):  
Simone Wurster ◽  
Luana Ladu

At the Hanover Fair in April 2018, the Bioconcept-Car was presented as a model for the future of sustainable mobility. Likewise, a car made of cellulose nanofiber was presented at the Tokyo Motor Show in 2019. Various additional automotive applications for bio-based materials have been developed, some of which are already in use in cars. However, supportive measures for stimulating their market acceptance are needed. Based on a mix of research methods, this article describes how ecolabels, sustainability standards, and regulations might support the market uptake of bio-based car components. In addition, comparison with three other types of bio-based products are provided. The article ends with suggestions for future market development activities.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 85
Author(s):  
Martin Brandl ◽  
Karlheinz Kellner

Powerline communication (PLC) is a versatile method that uses existing infrastructure such as power cables for data transmission. This makes PLC an alternative and cost-effective technology for the transmission of sensor and actuator data by making dual use of the power line and avoiding the need for other communication solutions; such as wireless radio frequency communication. A PLC modem using DSSS (direct sequence spread spectrum) for reliable LIN-bus based data transmission has been developed for automotive applications. Due to the almost complete system implementation in a low power microcontroller; the component cost could be radically reduced which is a necessary requirement for automotive applications. For performance evaluation the DSSS modem was compared to two commercial PLC systems. The DSSS and one of the commercial PLC systems were designed as a direct conversion receiver; the other commercial module uses a superheterodyne architecture. The performance of the systems was tested under the influence of narrowband interference and additive Gaussian noise added to the transmission channel. It was found that the performance of the DSSS modem against singleton interference is better than that of commercial PLC transceivers by at least the processing gain. The performance of the DSSS modem was at least 6 dB better than the other modules tested under the influence of the additive white Gaussian noise on the transmission channel at data rates of 19.2 kB/s.


Sign in / Sign up

Export Citation Format

Share Document