Vulnerability of Marine Species to Low Oxygen Under Climate Change

Author(s):  
Zhiyuan Shi ◽  
Jorge Assis ◽  
Mark John Costello
2016 ◽  
Vol 23 (6) ◽  
pp. 2284-2296 ◽  
Author(s):  
Christine H. Stortini ◽  
Denis Chabot ◽  
Nancy L. Shackell

Author(s):  
James W. E. Dickey ◽  
Neil E. Coughlan ◽  
Jaimie T. A. Dick ◽  
Vincent Médoc ◽  
Monica McCard ◽  
...  

AbstractThe influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species’ impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages.


2016 ◽  
Vol 29 (9) ◽  
pp. 1667-1679 ◽  
Author(s):  
L. J. Corrigan ◽  
A. Fabiani ◽  
L. F. Chauke ◽  
C. R. McMahon ◽  
M. de Bruyn ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
H. J. T. Hoving ◽  
P. Neitzel ◽  
H. Hauss ◽  
S. Christiansen ◽  
R. Kiko ◽  
...  

AbstractDistribution patterns of fragile gelatinous fauna in the open ocean remain scarcely documented. Using epi-and mesopelagic video transects in the eastern tropical North Atlantic, which features a mild but intensifying midwater oxygen minimum zone (OMZ), we established one of the first regional observations of diversity and abundance of large gelatinous zooplankton. We quantified the day and night vertical distribution of 46 taxa in relation to environmental conditions. While distribution may be driven by multiple factors, abundance peaks of individual taxa were observed in the OMZ core, both above and below the OMZ, only above, or only below the OMZ whereas some taxa did not have an obvious distribution pattern. In the eastern eropical North Atlantic, OMZ expansion in the course of global climate change may detrimentally impact taxa that avoid low oxygen concentrations (Beroe, doliolids), but favour taxa that occur in the OMZ (Lilyopsis, phaeodarians, Cydippida, Colobonema, Haliscera conica and Halitrephes) as their habitat volume might increase. While future efforts need to focus on physiology and taxonomy of pelagic fauna in the study region, our study presents biodiversity and distribution data for the regional epi- and mesopelagic zones of Cape Verde providing a regional baseline to monitor how climate change may impact the largest habitat on the planet, the deep pelagic realm.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231595
Author(s):  
Andrew J. Allyn ◽  
Michael A. Alexander ◽  
Bradley S. Franklin ◽  
Felix Massiot-Granier ◽  
Andrew J. Pershing ◽  
...  

Author(s):  
Michael B. Gerrard

This chapter presents an overview of climate change law in the United States, given the global impact of its domestic and international climate change policies. It traces the evolution of US climate change policy under different presidents, and discusses emerging programs under the Clean Air Act (CAA). Under the CAA, the Environmental Protection Agency (EPA) issues emissions standards, and under the Energy Policy Conservation Act, the National Highway Traffic Safety Administration (NHTSA) issues Corporate Average Fuel Economy (CAFE) standards. The chapter also describes the protection of endangered species under the Endangered Species Act (ESA). The ESA directs the Fish and Wildlife Service to designate certain species as endangered or threatened; for marine species that task falls to the National Marine Fisheries Service.


Author(s):  
Victor Galaz

Climate change is increasingly being framed as a “climate crisis.” Such a crisis could be viewed both to unfold in the climate system, as well as to be induced by it in diverse areas of society. Following from current understandings of modern crises, it is clear that climate change indeed can be defined as a “crisis.” As the Intergovernmental Panel on Climate Change 1.5oC special report elaborates, the repercussions of a warming planet include increased food insecurity, increased frequency and intensity of severe droughts, extreme heat waves, the loss of coral reef ecosystems and associated marine species, and more. It is also important to note that a range of possible climate-induced crises (through, e.g., possible increased food insecurity and weather extremes) will not be distributed evenly, but will instead disproportionally affect already vulnerable social groups, communities, and countries in detrimental ways. The multifaceted dimensions of climate change allow for multiple interpretations and framings of “climate crisis,” thereby forcing us to acknowledge the deeply contextual nature of what is understood as a “crisis.” Climate change and its associated crises display a number of challenging properties that stem from its connections to basically all sectors in society, its propensity to induce and in itself embed nonlinear changes such as “tipping points” and cascading shocks, and its unique and challenging long-term temporal dimensions. The latter pose particularly difficult decision-making and institutional challenges because initial conditions (in this case, carbon dioxide emissions) do not result in immediate or proportional responses (say, global temperature anomalies), but instead play out through feedbacks among the climate system, oceans, the cryosphere, and changes in forest biomes, with some considerable delays in time. Additional challenges emerge from the fact that early warnings of pending so-called “catastrophic shifts” face numerous obstacles, and that early responses are undermined by a lack of knowledge, complex causality, and severe coordination challenges.


2019 ◽  
Vol 374 (1768) ◽  
pp. 20180186 ◽  
Author(s):  
Jennifer M. Donelson ◽  
Jennifer M. Sunday ◽  
Will F. Figueira ◽  
Juan Diego Gaitán-Espitia ◽  
Alistair J. Hobday ◽  
...  

Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation.This article is part of the theme issue ‘The role of plasticity in phenotypic adaptation to rapid environmental change’.


Sign in / Sign up

Export Citation Format

Share Document