Role of plant-associated bacteria as bio-stimulants in alleviation of chromium toxicity in plants

2022 ◽  
pp. 199-212
Author(s):  
Pratishtha Gupta ◽  
Vipin Kumar ◽  
Rupa Rani
2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Rashid Pervez ◽  
Showkat Ahmad Lone ◽  
Sasmita Pattnaik

Abstract Background Entomopathogenic nematodes (EPNs) harboring symbiotic bacteria are one of the safest alternatives to the chemical insecticides for the control of various insect pests. Infective juveniles of EPNs locate a target insect, enter through the openings, and reach the hemocoel, where they release the symbiotic bacteria and the target gets killed by the virulence factors of the bacteria. Photorhabdus with Heterorhabditis spp. are well documented; little is known about the associated bacteria. Main body In this study, we explored the presence of symbiotic and associated bacteria from Heterorhabditis sp. (IISR-EPN 09) and characterized by phenotypic, biochemical, and molecular approaches. Six bacterial isolates, belonging to four different genera, were recovered and identified as follows: Photorhabdus luminescens, one each strain of Providencia vermicola, Pseudomonas entomophila, Alcaligenes aquatilis, and two strains of Alcaligenes faecalis based on the phenotypic, biochemical criteria and the sequencing of 16S rRNA gene. Conclusion P. luminescens is symbiotically associated with Heterorhabditis sp. (IISR-EPN 09), whereas P. vermicola, P. entomophila, A. aquatilis, and A. faecalis are the associated bacteria. Further studies are needed to determine the exact role of the bacterial associates with the Heterorhabditis sp.


2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Yu-Xi Zhu ◽  
Zhang-Rong Song ◽  
Shi-Mei Huo ◽  
Kun Yang ◽  
Xiao-Yue Hong

ABSTRACT Most arthropod-associated bacterial communities play a crucial role in host functional traits, whose structure could be dominated by endosymbionts. The spider mite Tetranychus truncatus is a notorious agricultural pest harboring various endosymbionts, yet the effects of endosymbionts on spider mite microbiota remain largely unknown. Here, using deep sequencing of the 16S rRNA gene, we characterized the microbiota of male and female T. truncatus with different endosymbionts (Wolbachia and Spiroplasma) across different developmental stages. Although the spider mite microbiota composition varied across the different developmental stages, Proteobacteria were the most dominant bacteria harbored in all samples. Positive relationships among related operational taxonomic units dominated the significant coassociation networks among bacteria. Moreover, the spider mites coinfected with Wolbachia and Spiroplasma had a significantly higher daily fecundity and juvenile survival rate than the singly infected or uninfected spider mites. The possible function of spider-mite associated bacteria was discussed. Our results highlight the dynamics of spider mite microbiotas across different life stages, and the potential role of endosymbionts in shaping the microbiota of spider mites and improving host fitness.


2007 ◽  
Vol 97 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Leland S. Pierson ◽  
Elizabeth A. Pierson

In nature, Pseudomonas species compete and co-exist in mixed communities with a diversity of prokaryotic and eukaryotic micro- and macroorganisms. Many bacteria produce various signals that control gene expression and thus contribute to specific bacterial behaviors and coordinate essential functions with other members of the community. The best-studied signaling compounds are N-acyl-homoserine lactones (AHLs), which are involved in quorum sensing (QS) regulation and are produced by a diverse range of bacterial taxa. To date, research on QS has focused on how signals control gene expression in the bacterial cell and the role of these signals in positive and negative communication among different groups of organisms. Additionally, mechanisms for AHL decay and AHL utilization as sole carbon/energy sources have been identified. Some host organisms produce compounds that can mimic AHLs, and some bacterial signals can influence host gene expression. Thus, interkingdom communication may be more widespread than previously believed. Our current understanding of individual, community and bacterial-host interactions is still in its infancy and there are many exciting discoveries yet to be made.


2017 ◽  
Vol 50 (6) ◽  
pp. 1600746 ◽  
Author(s):  
Alexandra Zimmermann ◽  
Henrik Knecht ◽  
Robert Häsler ◽  
Gernot Zissel ◽  
Karoline I. Gaede ◽  
...  

Sarcoidosis is a granulomatous disease that mainly affects the lung. A role of microbial factors in disease pathogenesis is assumed, but has not been investigated systematically in a large cohort.This cross-sectional study compared the lung microbiota of 71 patients with sarcoidosis, 15 patients with idiopathic pulmonary fibrosis (non-infectious controls) and 10 healthy controls (HCs). Next-generation sequencing of 16S DNA was used on bronchoalveolar lavage samples to characterise the microbial composition, which was analysed for diversity and indicator species. Host genotypes for 13 known sarcoidosis risk variants were determined and correlated with microbial parameters.The microbial composition differed significantly between sarcoidosis and HC samples (redundancy analysis ANOVA, p=0.025) and between radiographic Scadding types. Atopobium spp. was detected in 68% of sarcoidosis samples, but not in HC samples. Fusobacterium spp. was significantly more abundant in sarcoidosis samples compared with those from HCs. Mycobacteria were found in two of 71 sarcoidosis samples. Host-genotype analysis revealed an association of the rs2076530 (BTNL2) risk allele with a decrease in bacterial burden (p=0.002).Our results indicate Scadding type-dependent microbiota in sarcoidosis BAL samples. Atopobium spp. and Fusobacterium spp. were identified as sarcoidosis-associated bacteria, which may enable new insights into the pathogenesis and treatment of the disease.


2020 ◽  
Author(s):  
Masaru Bamba ◽  
Seishiro Aoki ◽  
Tadashi Kajita ◽  
Hiroaki Setoguchi ◽  
Yasuyuki Watano ◽  
...  

ABSTRACTIn diverse mutualistic relationships, genetic variations in impact on the growth of interacting partners—variations in partner quality—are common, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variations. Here, we investigated how variations in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variations in the core genome and the contrastingly similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using nine sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variations represented by plant growth phenotypes, including genotype-by-genotype interactions. Quality variations were not associated with the presence/absence variations of known symbiosis-related genes in the symbiosis island, but rather, showed significant correlations with the core genome variations, supported by SNP- and kinship matrix-based association analyses. These findings highlight the novel role of HGT of symbiosis islands, which indirectly supply mutations of core genomes into L. japonicus-associated bacteria, thereby contributing to the maintenance of variations in partner quality.


2020 ◽  
Author(s):  
Trigal M. Velásquez-Rodríguez ◽  
Catalina Zuluaga-Arias ◽  
Sandra M. Montaño-Salazar ◽  
John M. González ◽  
Juan Armando Sánchez

AbstractParrotfish are a keystone group that reduces competition between algae and corals while shaping the dynamics and resilience of coral reefs. We investigated the structure of disseminated coral-associated bacteria and the extent to which the cell integrity of dinoflagellate photosymbionts (family Symbiodiniaceae) is maintained in the faeces. Similar levels of structural integrity and photosynthetic health of Symbidiodinaceae cells were found in both faeces and reef sediments. Besides, the sediments microbiome echoes the parrotfish faecal microbiome by sharing high diversity and a similar bacterial community composition. These findings uncover the role of excavator parrotfish endozoochory in enriching environmental reservoirs, especially reef sediments, with coral-associated bacteria and photosynthetic microalgae. These processes reinforce the coral microbiome and facilitate coral symbiont acquisition, key features critical to maintaining the health of the most threatened ecosystems on earth. Excavator parrotfish are comparable to herbivorous seed dispersers in terrestrial ecosystems based on the same endozoochorous strategy.


2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Robert J. Dorosky ◽  
Jun Myoung Yu ◽  
Leland S. Pierson ◽  
Elizabeth A. Pierson

ABSTRACT R-type tailocins are high-molecular-weight bacteriocins that resemble bacteriophage tails and are encoded within the genomes of many Pseudomonas species. In this study, analysis of the P. chlororaphis 30-84 R-tailocin gene cluster revealed that it contains the structural components to produce two R-tailocins of different ancestral origins. Two distinct R-tailocin populations differing in length were observed in UV-induced lysates of P. chlororaphis 30-84 via transmission electron microscopy. Mutants defective in the production of one or both R-tailocins demonstrated that the killing spectrum of each tailocin is limited to Pseudomonas species. The spectra of pseudomonads killed by the two R-tailocins differed, although a few Pseudomonas species were either killed by or insusceptible to both tailocins. Tailocin release was disrupted by deletion of the holin gene within the tailocin gene cluster, demonstrating that the lysis cassette is required for the release of both R-tailocins. The loss of functional tailocin production reduced the ability of P. chlororaphis 30-84 to compete with an R-tailocin-sensitive strain within biofilms and rhizosphere communities. Our study demonstrates that Pseudomonas species can produce more than one functional R-tailocin particle sharing the same lysis cassette but differing in their killing spectra. This study provides evidence for the role of R-tailocins as determinants of bacterial competition among plant-associated Pseudomonas in biofilms and the rhizosphere. IMPORTANCE Recent studies have identified R-tailocin gene clusters potentially encoding more than one R-tailocin within the genomes of plant-associated Pseudomonas but have not demonstrated that more than one particle is produced or the ecological significance of the production of multiple R-tailocins. This study demonstrates for the first time that Pseudomonas strains can produce two distinct R-tailocins with different killing spectra, both of which contribute to bacterial competition between rhizosphere-associated bacteria. These results provide new insight into the previously uncharacterized role of R-tailocin production by plant-associated Pseudomonas species in bacterial population dynamics within surface-attached biofilms and on roots.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 496
Author(s):  
Nancy Weiland-Bräuer

Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document