Engineering plants for metal tolerance and accumulation

2022 ◽  
pp. 455-480
Author(s):  
Amauri Ponce-Hernández ◽  
Angel Josabad Alonso-Castro ◽  
Ramón Fernando García-De La Cruz ◽  
Candy Carranza-Alvarez
Keyword(s):  
Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 598
Author(s):  
Muneeba Qurban ◽  
Cyrus Raza Mirza ◽  
Aqib Hassan Ali Khan ◽  
Walid Khalifa ◽  
Mustapha Boukendakdji ◽  
...  

The problem of metal-induced toxicity is proliferating with an increase in industrialization and urbanization. The buildup of metals results in severe environmental deterioration and harmful impacts on plant growth. In this study, we investigated the potential of two ornamental plants, Catharanthus roseus (L.) G.Don and Celosia argentea L., to tolerate and accumulate Ni, Cr, Cd, Pb, and Cu. These ornamental plants were grown in Hoagland’s nutrient solution containing metal loads (50 µM and 100 µM) alone and in combination with a synthetic chelator, ethylenediaminetetraacetic acid (EDTA) (2.5 mM). Plant growth and metal tolerance varied in both plant species for Ni, Cr, Cd, Pb, and Cu. C. roseus growth was better in treatments without EDTA, particularly in Ni, Cr, and Pb treatments, and Pb content increased in all parts of the plant. In contrast, Cd content decreased with EDTA addition. In C. argentea, the addition of EDTA resulted in improved plant biomass at both doses of Cu. In contrast, plant biomass reduced significantly in the case of Ni. In C. argentea, without EDTA, root length in Cd and Cu treatments was significantly lower than the control and other treatments. However, the addition of EDTA resulted in improved growth at both doses for Pb and Cu. Metal accumulation in C. argentea enhanced significantly with EDTA addition at both doses of Cu and Cd. Hence, it can be concluded that EDTA addition resulted in improved growth and better metal uptake than treatments without EDTA. Metal accumulation increased with EDTA addition compared to treatments without EDTA, particularly for Pb in C. roseus and Cu and Cd in C. argentea. Based on the present results, C. roseus showed a better ability to phytostabilize Cu, Cd, and Ni, while C. argentea worked better for Ni, Cd, Cu, and Pb.


Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


2021 ◽  
Author(s):  
Jie He ◽  
Nico Rössner ◽  
Minh T T Hoang ◽  
Santiago Alejandro ◽  
Edgar Peiter

Abstract Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments [Golgi apparatus, trans-Golgi Network (TGN), prevacuolar compartment (PVC)], vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g., Glutamate-Receptor-Likes (GLRs), Cyclic-Nucleotide-Gated Channels (CNGCs), Mitochondrial Conductivity Units (MCUs), Two-Pore Channel1 (TPC1)], transporters [e.g., Natural-Resistance-Associated Macrophage Proteins (NRAMPs), Calcium Exchangers (CAXs), Metal-Tolerance Proteins (MTPs), Bivalent-Cation Transporters (BICATs)] and pumps [Autoinhibited Ca2+-ATPases (ACAs), ER Ca2+-ATPases (ECAs)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular with respect to tunable molecular mechanisms of Ca2+-versus-Mn2+ selectivity.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Anastasia Giannakoula ◽  
Ioannis Therios ◽  
Christos Chatzissavvidis

Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb− and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.


Metallomics ◽  
2020 ◽  
Author(s):  
Anna Papierniak-Wygladala ◽  
Katarzyna Kozak ◽  
Anna Barabasz ◽  
Małgorzata Palusińska ◽  
Małgorzata Całka ◽  
...  

Metal Tolerance Protein 2 from N. tabacum (NtMTP2) is a tonoplast-localized Co and Ni efflux transporter. As an housekeeping protein controls optimal micronutrients concentration in the cytoplasm, and sequesters metal excess specifically in leaves.


BioMetals ◽  
2012 ◽  
Vol 25 (3) ◽  
pp. 489-505 ◽  
Author(s):  
Ganesh Thapa ◽  
Ayan Sadhukhan ◽  
Sanjib Kumar Panda ◽  
Lingaraj Sahoo

2018 ◽  
Vol 42 (2) ◽  
Author(s):  
Daniele Maria Marques ◽  
Adriano Bortolotti Silva ◽  
José Ricardo Mantovani ◽  
Dalvana Sousa Pereira ◽  
Thiago Corrêa Souza

ABSTRACT Copper (Cu) is an essential micronutrient for plants. However, when in excess, it becomes phytotoxic. In this context, the objective of this study was to evaluate the growth and physiological responses of tree species exposed to different copper concentrations in the soil. Three experiments were carried out, one for each forest species under study: Myroxylon peruiferum ("Óleo Bálsamo"), Hymenaea courbaril ("Jatobá") and Peltophorum dubium ("Canafístula"), with the same doses of copper (0, 50, 100, 200 and 400 mg kg-1). The experimental design was in randomized blocks (DBC), with five copper concentrations and four replicates. The plants were grown on soil substrate packed in 8-dm3 pots and kept in a greenhouse for 90 days. Biometric measurements, chlorophyll, antioxidant enzymes and copper content in tissues were evaluated. Copper did not influence the vegetative growth of the species studied. The content of chlorophyll "a" was reduced with increasing copper concentrations in the soil. H. courbaril had 56 to 92% copper retained in the roots, and the same behavior was observed for P. dubium (77-91%) and M. peruiferum (19-64%). In the three species studied, there was copper bioaccumulation, mainly in the roots, possibly as a metal tolerance strategy, preserving the most active tissues and the photosynthetic machinery. Cu translocation from roots to shoot was very restricted in all species. This behavior, associated with the increase in the activity of some antioxidant enzymes in plants, may indicate the phytoremediation potential of the studied species.


Sign in / Sign up

Export Citation Format

Share Document