EFFECT OF PROCESS CONDITIONS DURING MELTSPINNING ON SOLIDIFICATION MORPHOLOGY OF ALUMINIUM ALLOYS

1985 ◽  
pp. 819-822 ◽  
Author(s):  
Laurens KATGERMAN
2014 ◽  
Vol 59 (1) ◽  
pp. 385-392
Author(s):  
B. Rams ◽  
A. Pietras ◽  
K. Mroczka

Abstract The article presents application of FSW method for joining elements made of cast aluminium alloys which are hardly weldable with other known welding techniques. Research’s results of plasticizing process of aluminium and moulding of seam weld during different FSW process’ conditions were also presented. Influence of welding parameters, shape and dimensions of tool on weld structure, welding stability and quality was examined. Application of FSW method was exemplified on welding of hemispheres for valves made of cast aluminium alloy EN AC-43200.


2010 ◽  
Vol 107 ◽  
pp. 117-121 ◽  
Author(s):  
Rafael Bienvenido ◽  
J.E. Díaz Vázquez ◽  
Francisco Javier Botana ◽  
M.J. Cano ◽  
Mariano Marcos Bárcena

In the aeronautical industrial sector, the control of the manufacturing process allows to fit the results to the conditions of design of pieces. This manufacturing process conditions the functional behaviour of pieces. In this work are presented the preliminary results of a study conducing to obtain the influence of machining parameters in the response to corrosion of aerospace aluminium alloys in seawater. This results show a high influence of feed, and a minor influence of cutting speed.


2012 ◽  
Vol 710 ◽  
pp. 43-49
Author(s):  
Laurens Katgerman ◽  
Dmitry G. Eskin

Research activities on aluminium production technology focus on the successive steps in the production chain of aluminium wrought products. Direct-chill casting of aluminium alloys is a well-developed technology with a long history. But only in the last 20 years, the development of computer modelling offered a means of better understanding of the physical phenomena involved in solidification. The main scientific challenge is to obtain a fundamental insight into the processing of aluminium alloys and to establish quantitative relationships between materials, processes, and performance. A systems approach is employed, covering theoretical and experimental studies on processing into semi-finished products. Special emphasis is placed on experimental verification and industrial applicability with the availability of pilot scale experimental facilities at M2i-TUD. This facilitates the design of process conditions as desired for experimental validation studies. In this paper we will consider main mechanisms of structure and defect formation during solidification of DC cast billets, mostly based in the results obtained in cooperation between Delft University of Technology and Materials Innovation Institute (M2i).


2018 ◽  
Vol 91 (2) ◽  
pp. 390-400 ◽  
Author(s):  
Barbora Hanulikova ◽  
Dana Shejbalova ◽  
Zdenek Dvorak

ABSTRACT Mold fouling during the crosslinking process of EPDM rubber compounds results in defects in compression-molded products and deterioration of process conditions. Moreover, subsequent cleaning of molds is expensive and causes a loss at production. The fouling of several types of steel and aluminum alloys, which represent molds with variously machined surfaces, was analyzed during 0–70 cycles of EPDM molding. Fourier transform infrared microscopy was used for investigation of fouling and paraffin oil (softener) and/or EPDM fragments were detected in vibrational spectra of fouling as the most probable components of it. Metal specimens with a grinded surface were found to be more resistant to EPDM residue deposition.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
A. Cziráki ◽  
E. Ková-csetényi ◽  
T. Torma ◽  
T. Turmezey

It is known that the formation of cavities during superplastic deformation can be correlated with the development of stress concentrations at irregularities along grain boundaries such as particles, ledges and triple points. In commercial aluminium alloys Al-Fe-Si particles or other coarse constituents may play an important role in cavity formation.Cavity formation during superplastic deformation was studied by optical metallography and transmission scanning electron microscopic investigations on Al-Mg-Si and Al-Mg-Mn alloys. The structure of particles was characterized by selected area diffraction and X-ray micro analysis. The volume fraction of “voids” was determined on mechanically polished surface.It was found by electron microscopy that strongly deformed regions are formed during superplastic forming at grain boundaries and around coarse particles.According to electron diffraction measurements these areas consist of small micro crystallized regions. See Fig.l.Comparing the volume fraction and morphology of cavities found by optical microscopy a good correlation was established between that of micro crystalline regions.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (7) ◽  
pp. 467-477
Author(s):  
PASI NIEMELAINEN ◽  
MARTTI PULLIAINEN ◽  
JARMO KAHALA ◽  
SAMPO LUUKKAINEN

Black liquor high solids (about 80%) concentrators have often been found to suffer from aggressive corrosion. In particular, the first and second effect bodies are susceptible to corrosion attacks resulting in tube leaks and wall thinning, which limit the availability and lifetime of evaporator lines. Corrosion dynamics and construction materials have been studied extensively within the pulp and paper industry to understand the corrosion process. However, it has been challenging to identify root causes for corrosion, which has limited proactive measures to minimize corrosion damage. Corrosion of the first phase concentrator was studied by defining the potential regions for passive area, stress corrosion cracking, pitting corrosion, and general corrosion. This was achieved by using a technique called polarization scan that reveals ranges for the passive area in which the equipment is naturally protected against corrosion. The open circuit potential, also known as corrosion potential, and linear polarization resistance of the metal were monitored online, which allowed for definition of corrosion risks for stainless steel 304L and duplex stainless steels 2205 and SAF 2906. An online temperature measurement added insight to the analysis. A process diagnostics tool was used to identify root causes of the corrosion attacks. Many of the root causes were related to process conditions triggering corrosion. Once the metal surface was activated, it was difficult to repassivate the metal naturally unless a sufficient potential range was reached.


Sign in / Sign up

Export Citation Format

Share Document