Viable cell culture in PDMS-based microfluidic devices

Author(s):  
Melikhan Tanyeri ◽  
Savaş Tay
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Bryan ◽  
Michael Henry ◽  
Ronan M. Kelly ◽  
Christopher C. Frye ◽  
Matthew D. Osborne ◽  
...  

Abstract Background The ability to achieve high peak viable cell density earlier in CHO cell culture and maintain an extended cell viability throughout the production process is highly desirable to increase recombinant protein yields, reduce host cell impurities for downstream processing and reduce the cost of goods. In this study we implemented label-free LC-MS/MS proteomic profiling of IgG4 producing CHO cell lines throughout the duration of the cell culture to identify differentially expressed (DE) proteins and intracellular pathways associated with the high peak viable cell density (VCD) and extended culture VCD phenotypes. Results We identified key pathways in DNA replication, mitotic cell cycle and evasion of p53 mediated apoptosis in high peak VCD clonally derived cell lines (CDCLs). ER to Golgi vesicle mediated transport was found to be highly expressed in extended culture VCD CDCLs while networks involving endocytosis and oxidative stress response were significantly downregulated. Conclusion This investigation highlights key pathways for targeted engineering to generate desirable CHO cell phenotypes for biotherapeutic production.


2010 ◽  
Vol 56 (8) ◽  
pp. 1003-1009 ◽  
Author(s):  
Katrin Göbbels ◽  
Anja Lena Thiebes ◽  
André van Ooyen ◽  
Uwe Schnakenberg ◽  
Peter Bräunig

2020 ◽  
Author(s):  
Giraso Kabandana ◽  
Adam Michael Ratajczak ◽  
Chengpeng Chen

Microfluidic technology has tremendously facilitated the development of in vitro cell cultures and studies. Conventionally, microfluidic devices are fabricated with extensive facilities by well-trained researchers, which hinders the widespread adoption of the technology for broader applications. Enlightened by the fact that low-cost microbore tubing is a natural microfluidic channel, we developed a series of adaptors in a toolkit that can twine, connect, organize, and configure the tubing to produce functional microfluidic units. Three subsets of the toolkit were thoroughly developed: the tubing and scoring tools, the flow adaptors, and the 3D cell culture suite. To demonstrate the usefulness and versatility of the toolkit, we assembled a microfluidic device and successfully applied it for 3D macrophage cultures, flow-based stimulation, and automated near real-time quantitation with new knowledge generated. Overall, we present a new technology that allows simple, fast, and robust assembly of customizable and scalable microfluidic devices with minimal facilities, which is broadly applicable to research that needs or could be enhanced by microfluidics.


2011 ◽  
Vol 16 (3) ◽  
pp. 171-185 ◽  
Author(s):  
Sara I. Montanez-Sauri ◽  
Kyung Eun Sung ◽  
John P. Puccinelli ◽  
Carolyn Pehlke ◽  
David J. Beebe

BioTechniques ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 98-109
Author(s):  
Athmaram Thimmasandra Narayanappa ◽  
Sam Mwilu ◽  
Stacy Holdread ◽  
Kimesha Hammett ◽  
George Bu ◽  
...  

Poloxamers are water-soluble polymers that are widely used in cell culture bioprocessing to protect cells against shearing forces. Use of poor-quality poloxamers may lead to a drastic reduction in cell growth, viabilities and productivities in cell culture-based manufacturing. In order to evaluate poloxamer quality and promote more consistent performance, a rapid cell membrane adhesion to hydrocarbon assay was developed based on the adhesive properties of cell membranes to selective hydrocarbons. The assay can identify a poor-performing poloxamer characterized by significant drop in viable cell density and percent viability. The assay was verified across multiple good and bad poloxamer lots, and the results were in agreement with established cell growth and high-performance liquid chromatography assays.


2007 ◽  
Vol 390 (3) ◽  
pp. 817-823 ◽  
Author(s):  
Makiko Goto ◽  
Takehiko Tsukahara ◽  
Kiichi Sato ◽  
Takehiko Kitamori

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dohyun Park ◽  
Jungseub Lee ◽  
Younggyun Lee ◽  
Kyungmin Son ◽  
Jin Woo Choi ◽  
...  

AbstractMicrofluidics offers promising methods for aligning cells in physiologically relevant configurations to recapitulate human organ functionality. Specifically, microstructures within microfluidic devices facilitate 3D cell culture by guiding hydrogel precursors containing cells. Conventional approaches utilize capillary forces of hydrogel precursors to guide fluid flow into desired areas of high wettability. These methods, however, require complicated fabrication processes and subtle loading protocols, thus limiting device throughput and experimental yield. Here, we present a swift and robust hydrogel patterning technique for 3D cell culture, where preloaded hydrogel solution in a microfluidic device is aspirated while only leaving a portion of the solution in desired channels. The device is designed such that differing critical capillary pressure conditions are established over the interfaces of the loaded hydrogel solution, which leads to controlled removal of the solution during aspiration. A proposed theoretical model of capillary pressure conditions provides physical insights to inform generalized design rules for device structures. We demonstrate formation of multiple, discontinuous hollow channels with a single aspiration. Then we test vasculogenic capacity of various cell types using a microfluidic device obtained by our technique to illustrate its capabilities as a viable micro-manufacturing scheme for high-throughput cellular co-culture.


2020 ◽  
Author(s):  
Mohammadhossein Dabaghi ◽  
Shadi Shahriari ◽  
Neda Saraei ◽  
Kevin Da ◽  
Abiram Chandiramohan ◽  
...  

AbstractPolydimethylsiloxane (PDMS) is a silicone-based synthetic material that is used in various biomedical applications due to its properties, including transparency, flexibility, permeability to gases, and ease of use. Though PDMS facilitates and realizes the fabrication of complicated geometries at the micro and nano scales, it does not optimally interact with cells for adherence and proliferation. Different strategies have been proposed to render PDMS to enhance cell attachment. The majority of these surface modification techniques have been offered for a static cell culture system. However, dynamic cell culture systems such as organ-on-a-chip devices are demanding platforms that recapitulate the complexity of a living tissue microenvironment. For organ-on-a-chip platforms, PDMS surfaces are usually coated by ECM proteins, which occur as a result of physical, weak bonding between PDMS and ECM proteins, and this binding can be degraded when it is exposed to shear stresses. This work reports static and dynamic coating methods to covalently bind collagen within a PDMS-based microfluidic device using polydopamine (PDA). These coating methods were evaluated using water contact angle measurement and atomic force microscopy (AFM) to find the optimum coating conditions. The biocompatibility of collagen-coated PDMS devices was assessed by culturing primary human bronchial epithelial cells (HBECs) in microfluidic devices. It was shown that both PDA coating methods could be used to bind collagen, thereby improving cell adhesion (around three times higher) without showing any discernible difference. These results suggested that such a surface modification can be used to coat an extracellular matrix protein onto PDMS-based microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document