Fast method for the determination of total fat and trans fatty-acids content in bakery products based on microwave-assisted Soxhlet extraction and medium infrared spectroscopy detection

2004 ◽  
Vol 517 (1-2) ◽  
pp. 13-20 ◽  
Author(s):  
F. Priego-Capote ◽  
J. Ruiz-Jiménez ◽  
J. Garcı́a-Olmo ◽  
M.D. Luque de Castro
Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2364
Author(s):  
João Gonçalo Lourenço ◽  
Daniel Ettlin ◽  
Inês Carrero Cardoso ◽  
Jesus M. Rodilla

A simple and rapid method for the quantitation of total fat in olive samples is designed, evaluated, and presented. This method is based on an innovative closed-vessel microwave-assisted extraction (MAE) technique. A method was designed for olives, and some figures of merits were evaluated: limit of detection (LOD), limit of quantification (LOQ) and expanded uncertainty (U). The data obtained in these experiences show that the workflow of the MAE method in a closed container is statistically equivalent to the other two methods, showing in this case better performance indicators (LOD = 0.02%, LOQ = 0.06%, and U = 15%). In addition, it is also demonstrated that the complete MAE method workflow allows the determination of total fat in a maximum of 12 analyses simultaneously for about 100 min in each run, which is the capacity of the rotor. This is a much better productivity when compared to the traditional Soxhlet-based method. Considering the sample workflow, the closed-vessel MAE method greatly simplifies sample handling, therefore minimizing sample loss during sample preparation and reducing analysis time. When MAE is compared to NIR-based methods, the advantage comes from there being no need for any type of calibration in the sample matrix. The MAE method itself can be used to determine the reference value for NIR calibration purposes. The results obtained for CRM using MAE were equivalent to the ones shown on the certificate.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
A Varga ◽  
E Sarkadi Nagy ◽  
L Zámbó ◽  
É Illés ◽  
M Bakacs ◽  
...  

Abstract Trans fatty acids are formed during the industrial processing of food, and are proven to be harmful for the human body. They have been associated with increased risk of cardiovascular disease, abdominal obesity, diabetes, and certain types of cancer. Decree 71/2013. (XI. 20.) of the Ministry of Human Capacities, which has been in force since 2014, defines the highest permitted amount of trans fats in food products placed on the market in Hungary. The impact of the decree on the industrially produced trans fatty acids (iTFA) availability and population intake was assessed in 2017. Results demonstrated that iTFA were replaced by other fatty acids due to the legislation. In 2019, we investigated food groups which had high measured TFA content before the regulation entered into force and compared the total fat and fatty acid profiles to the same brand or similar products being on the market afterwards. In collaboration with the World Health Organization, this was the first assessment to determine to which extent manufacturers increased saturated fat (SFA) content of foodstuffs to reduce iTFA content. In those product groups, which were identified as significant food sources of iTFA before introducing the regulation (biscuits, coffee creamers and flavorings, sweets, bakery products, confectionary, wafers, margarines) we found no significant changes in the total fat content, while in most foodstuffs the average proportion of SFA was higher after reformulation, as iTFA were mainly substituted with SFA in 61% of the products, with cis-MUFA in 25% and cis-PUFA in 14% of the products, respectively. Evidence from this analysis supports concerns that eliminating iTFA in certain foodstuffs leads to unwanted substitution with saturated fat, hence reducing the possible health benefits. Given the high SFA intake and the unfavourable cardiovascular statistics in Hungary, the consumption frequency and portion size control of these products are advised. Key messages Monitoring the changes of food composition is important in order to evaluate the effect of the regulation. Manufacturers should be encouraged to reduce the SFA content to a technologically feasible level.


Sign in / Sign up

Export Citation Format

Share Document