scholarly journals Improvements in sintered density and dimensional stability of powder injection-molded 316L compacts by adjusting the alloying compositions

2006 ◽  
Vol 54 (5) ◽  
pp. 1335-1342 ◽  
Author(s):  
G.J. Shu ◽  
K.S. Hwang ◽  
Y.T. Pan
2013 ◽  
Vol 747 ◽  
pp. 583-586 ◽  
Author(s):  
H. Özkan Gülsoy

This study focuses on the injection molding of Ti-Fe alloys. Low cost Ti alloy (Ti-Fe) was manufactured following a powder injection molding route. The Ti and Fe powders were dry mixed and molded with wax based binder. Binder debinding was performed by solvent and thermal method. After dedinding, the samples were sintered at 1100 oC and 1300 oC for 1 h in vacuum. Metallographic studies were conducted to extend densification and the corresponding microstructural changes. The sintered samples were characterized by measuring tensile strength, elongation and hardness. All powder, fracture surfaces of molded and sintered samples were examined using scanning electron microscope. The sintered density, tensile strength and hardness of injection molded Ti-Fe samples increases with increasing sintering temperature.


2012 ◽  
Vol 185 ◽  
pp. 102-105
Author(s):  
Muhammad Rafi Raza Malik ◽  
Faiz Ahmad ◽  
Othman Mamat ◽  
Mohd Afian Omar ◽  
R.M. German ◽  
...  

This research presents the effects of temperature and cooling rate on mechanical properties of powder injection molded 316L Stainless steel. Steel powder and binder were mixed together to produce the feedstock. The green samples were produced by injection molding and debinded. Brown test samples were sintered in vacuum at 1325°C, 1360°C and 1380°C for 2h with two heating and cooling rates 5°C/min and 10°C/ min. The test samples sintered at 1325°C achieved maximum sintered density. The higher cooling rate improved the strength of the sintered test samples. The maximum sintered density of 96% and tensile strength of 503MPa was achieved and these results are comparable to the wrought 316L stainless steel (according to ASTM standard).


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Atefeh A. Tafti ◽  
Vincent Demers ◽  
Seyed Mohammad Majdi ◽  
Guillem Vachon ◽  
Vladimir Brailovski

Low-pressure powder injection molding (LPIM) is a cost-effective technology for producing intricate small metal parts at high, medium, and low production volumes in applications which, to date, have involved ceramics or spherical metal powders. Since the use of irregular metal powders represents a promising way to reduce overall production costs, this study aims to investigate the potential of manufacturing powder injection molded parts from irregular commercial iron powders using the LPIM approach. To this end, a low viscosity feedstock was injected into a rectangular mold cavity, thermally wick-debound using three different pre-sintering temperatures, and finally sintered using an identical sintering cycle. During debinding, an increase in pre-sintering temperature from 600 to 850 °C decreased the number of fine particles. This decreased the sintered density from 6.2 to 5.1 g/cm3, increased the average pore size from 9 to 14 μm, and decreased pore circularity from 67 to 59%.


2016 ◽  
Vol 1133 ◽  
pp. 324-328 ◽  
Author(s):  
Muhammad Aslam ◽  
Faiz Ahmad ◽  
P.S.M. Bm-Yousoff ◽  
Khurram Altaf ◽  
Afian Omar ◽  
...  

Optimization of solvent debinding process parameters for powder injection molded 316L stainless steel (SS) has been reported in this research work. Powder gas atomized (PGA) 316L SS was blended with a multicomponent binder in Z-blade mixer at 170°C ± 5°C for 90 minutes. Feedstock was successfully injected at temperature 170 ± 5°C. Injection molded samples were immersed in n-heptane for 2h, 4h, 6h and 8h at temperatures 50°C ,55°C and 60°C to extract the soluble binder components. Scanning electron microscope (SEM) results attested that soluble binder components were completely extracted from injection molded samples at temperature 55°C after 6h.


2013 ◽  
Vol 79 (807) ◽  
pp. 1593-1603 ◽  
Author(s):  
Kazuaki NISHIYABU ◽  
Daiki TANABE ◽  
Yasuhiro KANOKO ◽  
Shigeo TANAKA

2007 ◽  
Vol 26-28 ◽  
pp. 355-358
Author(s):  
Chang Kyu Kim ◽  
Chang Young Son ◽  
Dae Jin Ha ◽  
Tae Sik Yoon ◽  
Sung Hak Lee

Powder injection molding (PIM) process was applied to Fe-based metamorphic alloy powders, and microstructure, hardness, and wear resistance of the PIM products were analyzed and compared with those of conventional PIM stainless steel products. When Fe-based metamorphic powders were injection-molded and then sintered at 1200 oC, completely densified products with almost no pores were obtained. They contained 34 vol.% of (Cr,Fe)2B borides dispersed in the austenitic matrix without amorphous phases. Since these (Cr,Fe)2B borides were very hard and thermally stable, hardness, and wear resistance of the PIM products of Fe-based metamorphic powders were twice as high as those of conventional PIM stainless steel products. Such property improvement suggested new applicability of the PIM products of Fe-based metamorphic powders to structures and parts requiring excellent mechanical properties.


Author(s):  
Toshiko Osada ◽  
Hideshi Miura ◽  
Takanobu Yamagami ◽  
Kazuaki Nishiyabu ◽  
Shigeo Tanaka

2011 ◽  
Vol 11 (11) ◽  
pp. 2042-2047 ◽  
Author(s):  
Muhammad Rafi Raza ◽  
Faiz Ahmad ◽  
M.A. Omar ◽  
R.M. German

Sign in / Sign up

Export Citation Format

Share Document