Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner

2018 ◽  
Vol 65 ◽  
pp. 426-435 ◽  
Author(s):  
Olwyn R. Mahon ◽  
Sarah O'Hanlon ◽  
Clare C. Cunningham ◽  
Geraldine M McCarthy ◽  
Christopher Hobbs ◽  
...  
1996 ◽  
Vol 16 (11) ◽  
pp. 5955-5963 ◽  
Author(s):  
S Krautwald ◽  
D Büscher ◽  
V Kummer ◽  
S Buder ◽  
M Baccarini

Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways.


2021 ◽  
Vol 22 (8) ◽  
pp. 4211
Author(s):  
Yen-Tze Liu ◽  
Hsin-Yu Ho ◽  
Chia-Chieh Lin ◽  
Yi-Ching Chuang ◽  
Yu-Sheng Lo ◽  
...  

Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Mingyu Hou ◽  
Wenhui Wang ◽  
Feizi Hu ◽  
Yuanxing Zhang ◽  
Dahai Yang ◽  
...  

ABSTRACT Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.


2004 ◽  
Vol 381 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Anderson A. ANDRADE ◽  
Patrícia N. G. SILVA ◽  
Anna C. T. C. PEREIRA ◽  
Lirlândia P. de SOUSA ◽  
Paulo C. P. FERREIRA ◽  
...  

Early events play a decisive role in virus multiplication. We have shown previously that activation of MAPK/ERK1/2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase 1/2) and protein kinase A are pivotal for vaccinia virus (VV) multiplication [de Magalhães, Andrade, Silva, Sousa, Ropert, Ferreira, Kroon, Gazzinelli and Bonjardim (2001) J. Biol. Chem. 276, 38353–38360]. In the present study, we show that VV infection provoked a sustained activation of both ERK1/2 and RSK2 (ribosomal S6 kinase 2). Our results also provide evidence that this pattern of kinase activation depends on virus multiplication and ongoing protein synthesis and is maintained independently of virus DNA synthesis. It is noteworthy that the VGF (VV growth factor), although involved, is not essential for prolonged ERK1/2 activation. Furthermore, our findings suggest that the VV-stimulated ERK1/2 activation also seems to require actin dynamics, microtubule polymerization and tyrosine kinase phosphorylation. The VV-stimulated pathway MEK/ERK1/2/RSK2 (where MEK stands for MAPK/ERK kinase) leads to phosphorylation of the ternary complex factor Elk-1 and expression of the early growth response (egr-1) gene, which kinetically paralleled the kinase activation. The recruitment of this pathway is biologically relevant, since its disruption caused a profound effect on viral thymidine kinase gene expression, viral DNA replication and VV multiplication. This pattern of sustained kinase activation after VV infection is unique. In addition, by connecting upstream signals generated at the cytoskeleton and by tyrosine kinase, the MEK/ERK1/2/RSK2 cascade seems to play a decisive role not only at early stages of the infection, i.e. post-penetration, but is also crucial to define the fate of virus progeny.


1994 ◽  
Vol 267 (3) ◽  
pp. G401-G408 ◽  
Author(s):  
R. D. Duan ◽  
J. A. Williams

The existence and activation of mitogen-activated protein (MAP) kinase in isolated pancreatic acini have been demonstrated. Immunoblotting and immunoprecipitation revealed two forms of MAP kinase in pancreatic acini, with relative molecular masses of approximately 42 and 44 kDa. Both forms of MAP kinase were activated by cholecystokinin (CCK). The threshold concentration of CCK was approximately 3 pM, and the maximal effect occurred at 1 nM, which enhanced MAP kinase activity by 2.5-fold, as determined in polyacrylamide gel copolymerized with substrate myelin basic protein. Activation of MAP kinase by CCK was rapid, reaching a maximum within 5-10 min that subsequently declined. Bombesin and carbachol but not secretin or vasoactive intestinal peptide also activated MAP kinase. CCK-induced activation of MAP kinase may be mediated by protein kinase C, since 12-O-tetradecanoylphorbol 13-acetate (TPA) mimicked the effect of CCK and staurosporine concentration dependently inhibited the action of CCK. Treatment of acini with thapsigargin, ionomycin, or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid did not influence MAP kinase, indicating that mobilization of intracellular calcium by CCK is not important in activation of acinar MAP kinase. CCK and TPA increased tyrosine phosphorylation of both 42- and 44-kDa forms. Genistein and tyrphostin 23, the inhibitors of tyrosine kinase, suppressed the activation of MAP kinase by CCK. In conclusion, MAP kinase in pancreatic acini is activated by agonists related to hydrolysis of phosphoinositide, via a mechanism involving protein kinase C and tyrosine kinase.


2008 ◽  
Vol 19 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Sébastien Wälchli ◽  
Sigrid S. Skånland ◽  
Tone F. Gregers ◽  
Silje U. Lauvrak ◽  
Maria L. Torgersen ◽  
...  

Shiga toxin (Stx) binds to the cell, and it is transported via endosomes and the Golgi apparatus to the endoplasmic reticulum and cytosol, where it exerts its toxic effect. We have recently shown that Stx activates the tyrosine kinase Syk, which in turn induces clathrin phosphorylation and up-regulates Stx uptake. Here, we show that toxin-induced signaling can also regulate another step in intracellular Stx transport. We demonstrate that transport of Stx to the Golgi apparatus is dependent on the mitogen-activated protein kinase p38. Treatment of cells with chemical inhibitors or small interfering RNA targeting p38 inhibited Stx transport to the Golgi and reduced Stx toxicity. This p38 dependence is specific to Stx, because transport of the related toxin ricin was not affected by p38 inhibition. Stx rapidly activated p38, and recruited it to early endosomes in a Ca2+-dependent manner. Furthermore, agonist-induced oscillations in cytosolic Ca2+levels were inhibited upon Stx stimulation, possibly reflecting Stx-dependent local alterations in cytosolic Ca2+levels. Intracellular transport of Stx is Ca2+dependent, and we provide evidence that Stx activates a signaling cascade involving cross talk between Ca2+and p38, to regulate its trafficking to the Golgi apparatus.


Sign in / Sign up

Export Citation Format

Share Document