scholarly journals Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy

2020 ◽  
Vol 31 ◽  
pp. 100929 ◽  
Author(s):  
Salah Eddine Brika ◽  
Morgan Letenneur ◽  
Christopher Alex Dion ◽  
Vladimir Brailovski
Author(s):  
Massimiliano Bonesso ◽  
Pietro Rebesan ◽  
Claudio Gennari ◽  
Simone Mancin ◽  
Razvan Dima ◽  
...  

AbstractOne of the major benefits of the Laser Powder Bed Fusion (LPBF) technology is the possibility of fabrication of complex geometries and features in only one-step of production. In the case of heat exchangers in particular, this is very convenient for the fabrication of conformal cooling channels which can improve the performance of the heat transfer capability. Yet, obtaining dense copper parts printed via LPBF presents two major problems: the high reflectivity of 1 μm (the wavelength of commonly used laser sources) and the high thermal conductivity of copper that limits the maximum local temperature that can be attained. This leads to the formation of porous parts.In this contribution, the influence of the particle size distribution of the powder on the physical and mechanical properties of parts produced via LPBF is studied. Three copper powders lots with different particle size distributions are used in this study. The effect on densification from two laser scan parameters (scan speed and hatching distance) and the influence of contours scans on the lateral surface roughness is reported. Subsequently, samples manufactured with the optimal process parameters are tested for thermal and mechanical properties evaluation.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 418
Author(s):  
Lukas Haferkamp ◽  
Livia Haudenschild ◽  
Adriaan Spierings ◽  
Konrad Wegener ◽  
Kirstin Riener ◽  
...  

The particle shape influences the part properties in laser powder bed fusion, and powder flowability and powder layer density (PLD) are considered the link between the powder and part properties. Therefore, this study investigates the relationship between these properties and their influence on final part density for six 1.4404 (316L) powders and eight AlSi10Mg powders. The results show a correlation of the powder properties with a Pearson correlation coefficient (PCC) of −0.89 for the PLD and the Hausner ratio, a PCC of −0.67 for the Hausner ratio and circularity, and a PCC of 0.72 for circularity and PLD. Furthermore, the results show that beyond a threshold, improvement of circularity, PLD, or Hausner ratio have no positive influence on the final part density. While the water-atomized, least-spherical powder yielded parts with high porosity, no improvement of part density was achieved by feedstock with higher circularities than gas-atomized powder.


2020 ◽  
Vol 51 (3) ◽  
pp. 1367-1378 ◽  
Author(s):  
A. C. Field ◽  
L. N. Carter ◽  
N. J. E. Adkins ◽  
M. M. Attallah ◽  
M. J. Gorley ◽  
...  

AbstractTwo high-purity tungsten powders, produced via different manufacturing techniques, were characterized to determine size distribution, morphology, thermal properties, and flow characteristics and, thus, the likely suitability for Laser Powder Bed Fusion (LPBF) production. Specimens from duplicate builds were produced with the two powders and characterized for density, defect mechanisms, and thermal penetration into the substrate plate to compare apparent power densities. The first powder was a chemically reduced powder with irregular morphology and the second, a plasma spheroidized powder with highly spherical morphology. The latter was found to have tighter morphological control and size distribution, having a third of particles at the modal particle size in comparison to a fifth of the chemically reduced powder. This led to better flow characteristics, and an increase of 1.5 g cm−3 (1500 kg m−3) in the packing densities seen in the powder bed which corresponds to 57 pct theoretical density vs 50 pct theoretical density in the chemically reduced powder. As a result, the specimens produced from the plasma spheroidized powder had higher densities (97.3 vs 88.5 pct) and the dominant defect mechanism moved from lack of fusion dominated in the chemically reduced powder to cracking dominated in the plasma spheroidized. The plasma spheroidized powder also showed higher apparent power densities (effective absorptivities) as evidenced by an 80 pct deeper penetration of the laser into the substrate plate.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1538
Author(s):  
Konrad Gruber ◽  
Irina Smolina ◽  
Marcin Kasprowicz ◽  
Tomasz Kurzynowski

In this paper, a detailed assessment of Inconel 718 powder, with varying degrees of degradation due to repeated use in the Laser Powder Bed Fusion (LPBF) process, has been undertaken. Four states of IN718 powder (virgin, used, overflow and spatter) were characterized in terms of their morphology, flowability and physico-chemical properties. Studies showed that used and overflow powders were almost identical. The fine particle-size distribution of the virgin powder, in which 50% of particles were found to be below the nominal particle-size distribution (PSD), was recognized as the main reason for its lower flowability and the main cause of the differentiation between virgin, used and overflow powders. Only spatter powder was found to be degraded enough to preclude its direct LPBF reuse. The oxygen content in the spatter powder exceeded the limit value for IN718 by 290 ppm, and aluminum oxide spots were found on the spatter particles surfaces. Laser absorption analysis showed 10 pp higher laser absorption compared to the other powders. The results of evaluation showed that IN718 powder is resistant to multiple uses in the LPBF process. Due to the low degradation rate of IN718 powder, overflow powder can be re-enabled for multiple uses with a proper recycling strategy.


2021 ◽  
Author(s):  
Sabrine Ziri ◽  
Anis Hor ◽  
Catherine Mabru

Despite the attractive capabilities of additive manufacturing (AM) technology, the industrialization of these processes remains very low. This is attributed to the complexes physical phenomena involved in the AM process and the layered structure of the produced parts. Intense research work is still needed for the prediction and optimization of AM parts mechanical properties. In this study, the influence of particle size distribution (PSD) of stainless steel 316L (SS 316L) powders on AM parts properties was investigated. Four PSD were used to produce test parts and compare the resulting porosity, surface roughness and macro-hardness. The SS 316L specimens were fabricated by Laser Powder Bed Fusion process (LPBF) on a SLM 125HL machine using variations in laser power and scan velocity. Computed scan tomography (CT) was used to characterize the defects. Lack of fusion and keyhole defects were detected. Defects were detected even in nearly dense parts. The powder size distribution was found to affect the porosity. Results from CT tests were used to identify the minimum achievable porosities for each powder, through the appropriate selection of process parameters. The macro-hardness and surface roughness were found to vary with the powder properties.


Sign in / Sign up

Export Citation Format

Share Document