scholarly journals Technological advances towards extracellular vesicles mass production

2021 ◽  
pp. 113843
Author(s):  
Alice Grangier ◽  
Julien Branchu ◽  
Jeanne Volatron ◽  
Max Piffoux ◽  
Florence Gazeau ◽  
...  
2021 ◽  
Vol 12 ◽  
pp. 204173142110190
Author(s):  
Jung-Hwan Lee ◽  
Ji-Young Yoon ◽  
Jun Hee Lee ◽  
Hae-Hyoung Lee ◽  
Jonathan C Knowles ◽  
...  

Extracellular vesicles (EVs), including exosomes, carry the genetic packages of RNA, DNA, and proteins and are heavily involved in cell-cell communications and intracellular signalings. Therefore, EVs are spotlighted as therapeutic mediators for the treatment of injured and dysfunctional tissues as well as biomarkers for the detection of disease status and progress. Several key issues in EVs, including payload content and bioactivity, targeting and bio-imaging ability, and mass-production, need to be improved to enable effective therapeutics and clinical translation. For this, significant efforts have been made recently, including genetic modification, biomolecular and chemical treatment, application of physical/mechanical cues, and 3D cultures. Here we communicate those recent technological advances made mainly in the biogenesis process of EVs or at post-collection stages, which ultimately aimed to improve the therapeutic efficacy in tissue healing and disease curing and the possibility of clinical translation. This communication will help tissue engineers and biomaterial scientists design and produce EVs optimally for tissue regenerative therapeutics.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 135 ◽  
Author(s):  
Charmet ◽  
Rodrigues ◽  
Yildirim ◽  
Challa ◽  
Roberts ◽  
...  

Microsystems are key enabling technologies, with applications found in almost every industrial field, including in vitro diagnostic, energy harvesting, automotive, telecommunication, drug screening, etc. Microsystems, such as microsensors and actuators, are typically made up of components below 1000 microns in size that can be manufactured at low unit cost through mass-production. Yet, their development for commercial or educational purposes has typically been limited to specialized laboratories in upper-income countries due to the initial investment costs associated with the microfabrication equipment and processes. However, recent technological advances have enabled the development of low-cost microfabrication tools. In this paper, we describe a range of low-cost approaches and equipment (below £1000), developed or adapted and implemented in our laboratories. We describe processes including photolithography, micromilling, 3D printing, xurography and screen-printing used for the microfabrication of structural and functional materials. The processes that can be used to shape a range of materials with sub-millimetre feature sizes are demonstrated here in the context of lab-on-chips, but they can be adapted for other applications. We anticipate that this paper, which will enable researchers to build a low-cost microfabrication toolbox in a wide range of settings, will spark a new interest in microsystems.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 139
Author(s):  
Premanshu Kumar Singh ◽  
Aarti Patel ◽  
Anastasia Kaffenes ◽  
Catherine Hord ◽  
Delaney Kesterson ◽  
...  

Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.


Author(s):  
Mohamad Hamouie

The scarcity of craftsmanship in our society is the result of modernist philosophies that celebrate mass production, mechanized industry, exponential economic gain and a corporate/developer-led economy. This relatively recent rupture in thousands of years of human history has led to the loss of generations of valuable knowledge and of an understanding of life stretching beyond material face value. A reconciliation between the traditional values of craftsmanship and contemporary technological advances has been at the core of my practice for over three decades. Here, the need for the “Architect Craftsman” is presented as an alternative approach to the egocentric modernist figure of the “Architect Artist” that has in recent times so widely informed our ways of building.


Author(s):  
Annette Bailey ◽  
Edward Lener ◽  
Leslie O’Brien ◽  
Connie Stovall

The history of library automation can be traced to early printing methods of the 7th century A.D. The earliest collectors of books were usually religious scholars who amassed the religious texts of the day. Monks from East and West travelled great distances and often at great peril to gather meticulously hand-copied texts. Early inventions of woodblocks, and, later the printing press, enabled the mass-production of books that resulted in libraries’ expansion into the secular world. Librarians have continued to bring technological advances into their work, combining web services, programming scripts, and commercial databases and software in innovative ways. The processes of selection, deselection, and assessment have been enhanced through these new products and services. The authors discuss a variety of technological applications for collection activities that have allowed collection managers to work more efficiently and better understand the use of their print and electronic collections. The effects of automation on the people involved in collection management are also explored.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alexandra Brahmer ◽  
Elmo W. I. Neuberger ◽  
Perikles Simon ◽  
Eva-Maria Krämer-Albers

Physical exercise induces acute physiological changes leading to enhanced tissue cross-talk and a liberation of extracellular vesicles (EVs) into the circulation. EVs are cell-derived membranous entities which carry bioactive material, such as proteins and RNA species, and are important mediators of cell-cell-communication. Different types of physical exercise interventions trigger the release of diverse EV subpopulations, which are hypothesized to be involved in physiological adaptation processes leading to health benefits and longevity. Large EVs (“microvesicles” and “microparticles”) are studied frequently in the context of physical exercise using straight forward flow cytometry approaches. However, the analysis of small EVs (sEVs) including exosomes is hampered by the complex composition of blood, confounding the methodology of EV isolation and characterization. This mini review presents a concise overview of the current state of research on sEVs released upon physical exercise (ExerVs), highlighting the technical limits of ExerV analysis. The purity of EV preparations is highly influenced by the co-isolation of non-EV structures in the size range or density of EVs, such as lipoproteins and protein aggregates. Technical constraints associated with EV purification challenge the quantification of distinct ExerV populations, the identification of their cargo, and the investigation of their biological functions. Here, we offer recommendations for the isolation and characterization of ExerVs to minimize the effects of these drawbacks. Technological advances in the ExerV research field will improve understanding of the inter-cellular cross-talk induced by physical exercise leading to health benefits.


2019 ◽  
Vol 42 ◽  
Author(s):  
Joseph A. Tainter ◽  
Temis G. Taylor

Abstract We question Baumard's underlying assumption that humans have a propensity to innovate. Affordable transportation and energy underpinned the Industrial Revolution, making mass production/consumption possible. Although we cannot accept Baumard's thesis on the Industrial Revolution, it may help explain why complexity and innovation increase rapidly in the context of abundant energy.


1988 ◽  
Vol 102 ◽  
pp. 129-132
Author(s):  
K.L. Baluja ◽  
K. Butler ◽  
J. Le Bourlot ◽  
C.J. Zeippen

SummaryUsing sophisticated computer programs and elaborate physical models, accurate radiative and collisional atomic data of astrophysical interest have been or are being calculated. The cases treated include radiative transitions between bound states in the 2p4and 2s2p5configurations of many ions in the oxygen isoelectronic sequence, the photoionisation of the ground state of neutral iron, the electron impact excitation of the fine-structure forbidden transitions within the 3p3ground configuration of CℓIII, Ar IV and K V, and the mass-production of radiative data for ions in the oxygen and fluorine isoelectronic sequences, as part of the international Opacity Project.


Author(s):  
K. Yoshida ◽  
F. Murata ◽  
S. Ohno ◽  
T. Nagata

IntroductionSeveral methods of mounting emulsion for radioautography at the electron microscopic level have been reported. From the viewpoint of quantitative radioautography, however, there are many critical problems in the procedure to produce radioautographs. For example, it is necessary to apply and develop emulsions in several experimental groups under an identical condition. Moreover, it is necessary to treat a lot of grids at the same time in the dark room for statistical analysis. Since the complicated process and technical difficulties in these procedures are inadequate to conduct a quantitative analysis of many radioautographs at once, many factors may bring about unexpected results. In order to improve these complicated procedures, a simplified dropping method for mass production of radioautographs under an identical condition was previously reported. However, this procedure was not completely satisfactory from the viewpoint of emulsion homogeneity. This paper reports another improved procedure employing wire loops.


Sign in / Sign up

Export Citation Format

Share Document