Low-voltage process-insensitive frequency compensation method for two-stage OTA with enhanced DC gain

2015 ◽  
Vol 69 (3) ◽  
pp. 685-690 ◽  
Author(s):  
Xiao Zhao ◽  
Huajun Fang ◽  
Tong Ling ◽  
Jun Xu
2015 ◽  
Vol 24 (04) ◽  
pp. 1550057 ◽  
Author(s):  
Meysam Akbari ◽  
Omid Hashemipour

By using Gm-C compensation (GCC) technique, a two-stage recycling folded cascode (FC) operational transconductance amplifier (OTA) is designed. The proposed configuration consists of recycling structure, positive feedback and feed-forward compensation path. In comparison with the typical folded cascode CMOS Miller amplifier, this design has higher DC gain, unity-gain frequency (UGF), slew rate and common mode rejection ratio (CMRR). The presented OTA is simulated in 0.18-μm CMOS technology and the simulation results confirm the theoretical analyses. Finally, the proposed amplifier has a 111 dB open-loop DC gain, 20 MHz UGF and 145 dB CMRR @ 1.2 V supply voltage while the power consumption is 400 μW which makes it suitable for low-voltage applications.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1156
Author(s):  
Lorenzo Benvenuti ◽  
Alessandro Catania ◽  
Giuseppe Manfredini ◽  
Andrea Ria ◽  
Massimo Piotto ◽  
...  

The design of ultra-low voltage analog CMOS integrated circuits requires ad hoc solutions to counteract the severe limitations introduced by the reduced voltage headroom. A popular approach is represented by inverter-based topologies, which however may suffer from reduced finite DC gain, thus limiting the accuracy and the resolutions of pivotal circuits like analog-to-digital converters. In this work, we discuss the effects of finite DC gain on ultra-low voltage ΔΣ modulators, focusing on the converter gain error. We propose an ultra-low voltage, ultra-low power, inverter-based ΔΣ modulator with reduced finite-DC-gain sensitivity. The modulator employs a two-stage, high DC-gain, switched-capacitor integrator that applies a correlated double sampling technique for offset cancellation and flicker noise reduction; it also makes use of an amplifier that implements a novel common-mode stabilization loop. The modulator was designed with the UMC 0.18 μm CMOS process to operate with a supply voltage of 0.3 V. It was validated by means of electrical simulations using the CadenceTM design environment. The achieved SNDR was 73 dB, with a bandwidth of 640 Hz, and a clock frequency of 164 kHz, consuming only 200.5 nW. It achieves a Schreier Figure of Merit of 168.1 dB. The proposed modulator is also able to work with lower supply voltages down to 0.15 V with the same resolution and a lower power consumption despite of a lower bandwidth. These characteristics make this design very appealing in sensor interfaces powered by energy harvesting sources.


2018 ◽  
Vol 98 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Boran Wen ◽  
Qisheng Zhang ◽  
Xiao Zhao
Keyword(s):  

Author(s):  
Furkan Barin ◽  
Ertan Zencir

In this paper, an ultra-wideband fully differential two-stage telescopic 65-nm CMOS op-amp is presented, which uses low-voltage design techniques such as level shifter circuits and low-voltage cascode current mirrors. The designed op-amp consists of two stages. While the telescopic first stage provides high speed and low swing, the second stage provides high gain and large swing. Common-mode feedback circuits (CMFB), which contain five transistors OTA and sensing resistors, are used to set the first-stage output to a known value. The designed two-stage telescopic operational amplifier has 41.04[Formula: see text]dB lower frequency gain, 1.81[Formula: see text]GHz gain-bandwidth product (GBW) and 51.9∘ phase margin under 5[Formula: see text]pF load capacitance. The design consumes a total current of 11.9[Formula: see text]mA from a 1.2-V supply voltage. Presented fully differential two-stage telescopic op-amp by using low-voltage design techniques is suitable for active filter in vehicle-to-everything (V2X) applications with 120[Formula: see text][Formula: see text]m[Formula: see text]m layout area.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2775
Author(s):  
Jung-min Park ◽  
Hyung-jun Byun ◽  
Bum-jun Kim ◽  
Sung-hun Kim ◽  
Chung-yuen Won

A voltage balancer (VB) can be used to balance voltages under load unbalance in either a bipolar DC microgrid or LVDC (Low voltage DC) distribution system. An interleaved buck-type VB has advantages over other voltage balance topologies for reduction in output current ripple by an aspect of configuration of a physically symmetrical structure. Similarly, magnetic coupling such as winding two or more magnetic components into a single magnetic component can be selected to enhance the power density and dynamic response. In order to achieve these advantages in a VB, this paper proposes a VB with a coupled inductor (CI) as a substitute for inductors in a two-stage interleaved buck-type VB circuit. Based on patterns of switch poles under load variation, the variation in inductor currents under four switching patterns is induced. The proposed CI is derived from self-inductance based on the configuration structure that has a two-stage interleaved buck type and mathematical design results based on the coupling coefficient, where the coupling coefficient is a key factor in the determination of the dynamic response of the proposed VB in load variation. According to the results, a prototype scale is implemented to confirm the feasibility and effectiveness of the proposed VB.


Sign in / Sign up

Export Citation Format

Share Document