A hybrid-mode bulk-driven folded cascode OTA with enhanced unity-gain bandwidth and slew rate

Author(s):  
Xiao Zhao ◽  
Qisheng Zhang ◽  
Liyuan Dong ◽  
Yongqing Wang
2013 ◽  
Vol 13 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Younghun Ko ◽  
Yeongshin Jang ◽  
Sok-Kyun Han ◽  
Sang-Gug Lee

2014 ◽  
Vol 23 (02) ◽  
pp. 1450022
Author(s):  
XIAO ZHAO ◽  
HUAJUN FANG ◽  
JUN XU

A low power current recycling constant-gm rail-to-rail (RtR) OTA is presented. The proposed amplifier has the benefit of delivering the same performance while consuming half the power compared to the conventional RtR amplifier. This is achieved by recycling the bias current of idle devices, which results in an enhanced transconductance, gain and slew rate. The proposed amplifier was implemented in CSMC standard 0.18 um CMOS process. Simulation results show that the proposed amplifier achieves 10.2 MHz unity-gain bandwidth, 59.4 dB DC gain, 4.8 V/us slew rate and less than 8% deviation in transconductance, but the power consumption reduced by 50% compared to the conventional RtR amplifier with the same design specifications.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950164 ◽  
Author(s):  
R. Nagulapalli ◽  
K. Hayatleh ◽  
S. Barker ◽  
B. Yassine ◽  
S. Zourob ◽  
...  

This paper explains the hidden positive feedback in a two-stage fully differential amplifier through external feedback resistors and possible DC latch-up during the amplifier start-up. The biasing current selection among the cascade branches has been explained intuitively, with reference to previous literature. To avoid the latch-up problem, irrespective of the transistor bias currents, a novel hysteresis-based start-up circuit is proposed. An 87[Formula: see text]dB, 250[Formula: see text]MHz unity gain bandwidth amplifier has been developed in 65[Formula: see text]nm CMOS Technology and post-layout simulations demonstrate no start-up failures out of 1000 Monte-Carlo (6-Sigma) simulations. The circuit draws 126[Formula: see text][Formula: see text]A from a 1.2[Formula: see text]V supply and occupies the 2184[Formula: see text][Formula: see text]m2 area.


2013 ◽  
Vol 389 ◽  
pp. 573-578
Author(s):  
Ming Xin Song ◽  
Yue Li ◽  
Meng Meng Xu

A high-gain folded cascode operational amplifier is presented. Structure of folded cascode operational amplifier and manual calculations are discussed in detail. Folded cascode structure for the input stage is adopted. Folded cascode structure can increase the gain and the value of PSRR. Folded cascode structure can also allow self-compensation at the output. The operational amplifier is designed in 0.35μm CMOS process with 5V power supply. The operational amplifier has high-gain and work steadily. The results of SPICE simulations are shown that the operational amplifier achieved dc gain of 110dB with unity-gain bandwidth of 74.3MHz and phase margin of 54.4 degree.


2014 ◽  
Vol 614 ◽  
pp. 237-240
Author(s):  
Lin Feng Wang ◽  
Qiao Meng ◽  
Hao Zhi

This paper presents a high unity gain bandwidth fully differential folded-cascode operational amplifier using gain-boosted technique. The amplifier is designed in TSMC 0.18μm 1P6M CMOS technology. The unity-gain bandwidth (GBW) and poles of the gain-boosting amplifiers were carefully designed to improve the stability. The implemented design provides a direct current (DC) gain of around 93 dB with a unity gain frequency of 1.8GHz. It exhibits a DC gain larger than 88dB when the output common-mode voltage between 0.6 V and 1.2V. the overall layout size is 96μm×120μm.


Sign in / Sign up

Export Citation Format

Share Document