Design of a Gain-Boosted Cascode Amplifier with High Unity-Bandwidth

2014 ◽  
Vol 614 ◽  
pp. 237-240
Author(s):  
Lin Feng Wang ◽  
Qiao Meng ◽  
Hao Zhi

This paper presents a high unity gain bandwidth fully differential folded-cascode operational amplifier using gain-boosted technique. The amplifier is designed in TSMC 0.18μm 1P6M CMOS technology. The unity-gain bandwidth (GBW) and poles of the gain-boosting amplifiers were carefully designed to improve the stability. The implemented design provides a direct current (DC) gain of around 93 dB with a unity gain frequency of 1.8GHz. It exhibits a DC gain larger than 88dB when the output common-mode voltage between 0.6 V and 1.2V. the overall layout size is 96μm×120μm.

2019 ◽  
Vol 28 (10) ◽  
pp. 1950164 ◽  
Author(s):  
R. Nagulapalli ◽  
K. Hayatleh ◽  
S. Barker ◽  
B. Yassine ◽  
S. Zourob ◽  
...  

This paper explains the hidden positive feedback in a two-stage fully differential amplifier through external feedback resistors and possible DC latch-up during the amplifier start-up. The biasing current selection among the cascade branches has been explained intuitively, with reference to previous literature. To avoid the latch-up problem, irrespective of the transistor bias currents, a novel hysteresis-based start-up circuit is proposed. An 87[Formula: see text]dB, 250[Formula: see text]MHz unity gain bandwidth amplifier has been developed in 65[Formula: see text]nm CMOS Technology and post-layout simulations demonstrate no start-up failures out of 1000 Monte-Carlo (6-Sigma) simulations. The circuit draws 126[Formula: see text][Formula: see text]A from a 1.2[Formula: see text]V supply and occupies the 2184[Formula: see text][Formula: see text]m2 area.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650144 ◽  
Author(s):  
Meysam Akbari ◽  
Omid Hashemipour

In this paper, a single-stage multi-path operational transconductance amplifier (OTA) with fast-settling response for high performance applications is designed. The produced amplifier uses current-shunt technique, double recycling structure, cross-coupled positive feedback configuration and all idle devices in the signal path to enhance transconductance of the conventional folded cascode (FC) amplifier. These transconductance boosting techniques lead to higher DC gain, gain bandwidth (GBW), slew rate and lower settling time compared to the previous FC structures while phase margin is degraded. Simulation results are presented using 90 nm CMOS technology which show 1,800% increment in GBW and a 33.2 dB DC gain improvement in the approximately same power consumption compared to the conventional FC amplifier.


2021 ◽  
Vol 11 (6) ◽  
pp. 2528 ◽  
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

A novel, inverter-based, fully differential, body-driven, rail-to-rail, input stage topology is proposed in this paper. The input stage exploits a replica bias control loop to set the common mode current and a common mode feed-forward strategy to set its output common mode voltage. This novel cell is used to build an ultralow voltage (ULV), ultralow-power (ULP), two-stage, unbuffered operational amplifier. A dual path compensation strategy is exploited to improve the frequency response of the circuit. The amplifier has been designed in a commercial 130 nm CMOS technology from STMicroelectronics and is able to operate with a nominal supply voltage of 0.3 V and a power consumption as low as 11.4 nW, while showing about 65 dB gain, a gain bandwidth product around 3.6 kHz with a 50 pF load capacitance and a common mode rejection ratio (CMRR) in excess of 60 dB. Transistor-level simulations show that the proposed circuit outperforms most of the state of the art amplifiers in terms of the main figures of merit. The results of extensive parametric and Monte Carlo simulations have demonstrated the robustness of the proposed circuit to PVT and mismatch variations.


Author(s):  
S.A Enche Ab Rahim ◽  
Mohd Azmi Ismail ◽  
Ahmad Ismat Abdul Rahim ◽  
M.R Yahya ◽  
Abdul Fatah Awang Mat

2013 ◽  
Vol 389 ◽  
pp. 573-578
Author(s):  
Ming Xin Song ◽  
Yue Li ◽  
Meng Meng Xu

A high-gain folded cascode operational amplifier is presented. Structure of folded cascode operational amplifier and manual calculations are discussed in detail. Folded cascode structure for the input stage is adopted. Folded cascode structure can increase the gain and the value of PSRR. Folded cascode structure can also allow self-compensation at the output. The operational amplifier is designed in 0.35μm CMOS process with 5V power supply. The operational amplifier has high-gain and work steadily. The results of SPICE simulations are shown that the operational amplifier achieved dc gain of 110dB with unity-gain bandwidth of 74.3MHz and phase margin of 54.4 degree.


Author(s):  
Priti Gupta ◽  
Sanjay Kumar Jana

This paper deals with the designing of low-power transconductance–capacitance-based loop filter. The folded cascode-based operational transconductance amplifier (OTA) is designed in this paper with the help of quasi-floating bulk MOSFET that achieved the DC gain of 88.61[Formula: see text]dB, unity gain frequency of 97.86[Formula: see text]MHz and power consumption of 430.62[Formula: see text][Formula: see text]W. The proposed OTA is compared with the exiting OTA structure which showed 19.50% increase in DC gain and 15.11% reduction in power consumption. Further, the proposed OTA is used for the designing of transconductance–capacitance-based loop filter that has been operated at [Formula: see text]3[Formula: see text]dB cut-off frequency of 30.12[Formula: see text]MHz with the power consumption of 860.90[Formula: see text][Formula: see text]W at the supply voltage of [Formula: see text][Formula: see text]V. The transistor-level simulation has been done in 0.18[Formula: see text][Formula: see text]m CMOS process.


Sign in / Sign up

Export Citation Format

Share Document