River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium

2008 ◽  
Vol 95 (7) ◽  
pp. 859-868 ◽  
Author(s):  
Pieter Cabus
2003 ◽  
Vol 7 (5) ◽  
pp. 693-706 ◽  
Author(s):  
E. Gaume ◽  
R. Gosset

Abstract. Recently Feed-Forward Artificial Neural Networks (FNN) have been gaining popularity for stream flow forecasting. However, despite the promising results presented in recent papers, their use is questionable. In theory, their “universal approximator‿ property guarantees that, if a sufficient number of neurons is selected, good performance of the models for interpolation purposes can be achieved. But the choice of a more complex model does not ensure a better prediction. Models with many parameters have a high capacity to fit the noise and the particularities of the calibration dataset, at the cost of diminishing their generalisation capacity. In support of the principle of model parsimony, a model selection method based on the validation performance of the models, "traditionally" used in the context of conceptual rainfall-runoff modelling, was adapted to the choice of a FFN structure. This method was applied to two different case studies: river flow prediction based on knowledge of upstream flows, and rainfall-runoff modelling. The predictive powers of the neural networks selected are compared to the results obtained with a linear model and a conceptual model (GR4j). In both case studies, the method leads to the selection of neural network structures with a limited number of neurons in the hidden layer (two or three). Moreover, the validation results of the selected FNN and of the linear model are very close. The conceptual model, specifically dedicated to rainfall-runoff modelling, appears to outperform the other two approaches. These conclusions, drawn on specific case studies using a particular evaluation method, add to the debate on the usefulness of Artificial Neural Networks in hydrology. Keywords: forecasting; stream-flow; rainfall-runoff; Artificial Neural Networks


1976 ◽  
Vol 12 (2) ◽  
pp. 209-214
Author(s):  
Saburo IKEDA ◽  
Mikiko OCHIAI ◽  
Yoshikazu SAWARAGI
Keyword(s):  

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2324
Author(s):  
Peng Lin ◽  
Pengfei Shi ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Zhenya Li ◽  
...  

Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood. The model is tested through comparison with other four models in three catchments in China. The Nash–Sutcliffe efficiency coefficient and the ratio of qualified results increase obviously. Results show that the model performs well in simulating various floods, providing a beneficial means to simulate floods in regions with complex runoff generation process.


2009 ◽  
Vol 13 (3) ◽  
pp. 293-303 ◽  
Author(s):  
Y. Xuan ◽  
I. D. Cluckie ◽  
Y. Wang

Abstract. Advances in mesoscale numerical weather predication make it possible to provide rainfall forecasts along with many other data fields at increasingly higher spatial resolutions. It is currently possible to incorporate high-resolution NWPs directly into flood forecasting systems in order to obtain an extended lead time. It is recognised, however, that direct application of rainfall outputs from the NWP model can contribute considerable uncertainty to the final river flow forecasts as the uncertainties inherent in the NWP are propagated into hydrological domains and can also be magnified by the scaling process. As the ensemble weather forecast has become operationally available, it is of particular interest to the hydrologist to investigate both the potential and implication of ensemble rainfall inputs to the hydrological modelling systems in terms of uncertainty propagation. In this paper, we employ a distributed hydrological model to analyse the performance of the ensemble flow forecasts based on the ensemble rainfall inputs from a short-range high-resolution mesoscale weather model. The results show that: (1) The hydrological model driven by QPF can produce forecasts comparable with those from a raingauge-driven one; (2) The ensemble hydrological forecast is able to disseminate abundant information with regard to the nature of the weather system and the confidence of the forecast itself; and (3) the uncertainties as well as systematic biases are sometimes significant and, as such, extra effort needs to be made to improve the quality of such a system.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 69 ◽  
Author(s):  
Eatemad Keshta ◽  
Mohamed A. Gad ◽  
Doaa Amin

This study develops a response-based hydrologic model for long-term (continuous) rainfall-runoff simulations over the catchment areas of big rivers. The model overcomes the typical difficulties in estimating infiltration and evapotranspiration parameters using a modified version of the Soil Conservation Service curve number SCS-CN method. In addition, the model simulates the surface and groundwater hydrograph components using the response unit-hydrograph approach instead of using a linear reservoir routing approach for routing surface and groundwater to the basin outlet. The unit-responses are Geographic Information Systems (GIS)-pre-calculated on a semi-distributed short-term basis and applied in the simulation in every time step. The unit responses are based on the time-area technique that can better simulate the real routing behavior of the basin. The model is less sensitive to groundwater infiltration parameters since groundwater is actually controlled by the surface component and not the opposite. For that reason, the model is called the SCHydro model (Surface Controlled Hydrologic model). The model is tested on the upper Blue Nile catchment area using 28 years daily river flow data set for calibration and validation. The results show that SCHydro model can simulate the long-term transforming behavior of the upper Blue Nile basin. Our initial assessment of the model indicates that the model is a promising tool for long-term river flow simulations, especially for long-term forecasting purposes due to its stability in performing the water balance.


2006 ◽  
Vol 6 (4) ◽  
pp. 629-635 ◽  
Author(s):  
R. Teschl ◽  
W. L. Randeu

Abstract. This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar measurements (pixels) representing areas requiring approximately the same time to dewater are grouped.


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Rana Muhammad Adnan ◽  
Xiaohui Yuan ◽  
Ozgur Kisi ◽  
Rabia Anam

River flow prediction is essential in many applications of water resources planning and management. In this paper, the accuracy of multivariate adaptive regression splines (MARS), model 5 regression tree (M5RT), and conventional multiple linear regression (CMLR) is compared with a hybrid least square support vector regression-gravitational search algorithm (HLGSA) in predicting monthly river flows. In the first part of the study, all three regression methods were compared with each other in predicting river flows of each basin. It was found that the HLGSA method performed better than the MARS, M5RT, and CMLR in river flow prediction. The effect of log transformation on prediction accuracy of the regression methods was also examined in the second part of the study. Log transformation of the river flow data significantly increased the prediction accuracy of all regression methods. It was also found that log HLGSA (LHLSGA) performed better than the other regression methods. In the third part of the study, the accuracy of the LHLGSA and HLGSA methods was examined in river flow estimation using nearby river flow data. On the basis of results of all applications, it was found that LHLGSA and HLGSA could be successfully used in prediction and estimation of river flow.


2018 ◽  
Vol 32 (14) ◽  
pp. 2217-2230 ◽  
Author(s):  
Rong Zhang ◽  
Luz Adriana Cuartas ◽  
Luiz Valerio de Castro Carvalho ◽  
Karinne Reis Deusdará Leal ◽  
Eduardo Mário Mendiondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document