Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management

2016 ◽  
Vol 164 ◽  
pp. 235-242 ◽  
Author(s):  
R. Nolz ◽  
P. Cepuder ◽  
J. Balas ◽  
W. Loiskandl
2021 ◽  
Author(s):  
Tailin Li ◽  
Nina Noreika ◽  
Jakub Jeřábek ◽  
Tomáš Dostál ◽  
David Zumr

<p>A better understanding of hydrological processes in agricultural catchments is not only crucial to hydrologists but also helpful for local farmers. Therefore, we have built the freely-available web-based WALNUD dataset (Water in Agricultural Landscape – NUčice Database) for our experimental catchment Nučice (0.53 km<sup>2</sup>), the Czech Republic. We have included observed precipitation, air temperature, stream discharge, and soil moisture in the dataset. Furthermore, we have applied numerical modelling techniques to investigate the hydrological processes (e.g. soil moisture variability, water balance) at the experimental catchment using the dataset.</p><p>The Nučice catchment, established in 2011, serves for the observation of rainfall-runoff processes, soil erosion and water balance of the cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9 %, and the climate is humid continental (mean annual temperature 7.9 °C, average annual precipitation 630 mm). The catchment consists of three fields covering over 95 % of the area. There is a narrow stream which begins as a subsurface drainage pipe in the uppermost field draining the water at catchment. The typical crops are winter wheat, rapeseed, mustard and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed in the area of the basin, and an H flume to monitor the stream discharge, water turbidity and basic water quality indicators. The soil water content (at point scale) and groundwater level are also recorded. Recently, we have installed two cosmic-ray soil moisture sensors (StyX Neutronica) to estimate large-scale topsoil water content at the catchment.</p><p>Even though the soil management and soil properties in the fields of Nučice seem to be nearly homogeneous, we have observed variability in the topsoil moisture pattern. The method for the explanation of the soil water regime was the combination of the connectivity indices and numerical modelling. The soil moisture profiles from the point-scale sensors were processed in a 1-D physically-based soil water model (HYDRUS-1D) to optimize the soil hydraulic parameters. Further, the soil hydraulic parameters were used as input into a 3D spatially-distributed model, MIKE-SHE. The MIKE-SHE simulation has been mainly calibrated with rainfall-runoff observations. Meanwhile, the spatial patterns of the soil moisture were assessed from the simulation for both dry and wet catchment conditions. From the MIKE-SHE simulation, the optimized soil hydraulic parameters have improved the estimation of soil moisture dynamics and runoff generation. Also, the correlation between the observed and simulated soil moisture spatial patterns showed different behaviors during the dry and wet catchment conditions.</p><p>This study has been supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS20/156/OHK1/3T/11 and the Project SHui which is co-funded by the European Union Project: 773903 and the Chinese MOST.</p>


2011 ◽  
Vol 31 (4) ◽  
pp. 676-686 ◽  
Author(s):  
Eduardo C. Oliveira ◽  
Jacinto de A. Carvalho ◽  
Wellington G. da Silva ◽  
Fátima C. Rezende ◽  
Willian F. de Almeida

The experiment was performed in the experimental area of the Engineering Department Federal University of Lavras, Minas Gerais State, Brazil. It aimed at identifying the adequate irrigation management of the greenhouse-cultivated Japanese cucumber (Cucumis sativus L.). complete randomized design, with four levels of soil water potential (15; 30; 60 e 120 kPa) at two phenological phases (vegetative and reproductive), and 5 replications. Overall, the results showed decrease of yield according to increase of soil water potentials. During the reproductive stage, Japanese cucumber plants were more sensitive to water deficit, resulting in further decrease in yield compared to applied water deficit during the vegetative stage of the culture.


2014 ◽  
Vol 06 (11) ◽  
pp. 961-971
Author(s):  
Luan Pan ◽  
Viacheslav I. Adamchuk ◽  
Richard B. Ferguson ◽  
Pierre R. L. Dutilleul ◽  
Shiv O. Prasher

Author(s):  
Aryan Dwivedi

Abstract: In dryland agriculture, Superabsorbent Polymers (SAPs) are popular. However, the mechanical property, repetitive soil water absorption and release, regularly affects the water retention and hydraulic parameters of the soil, and since this property decreases progressively over time, the results of the property appear to be unpredictable. Polymers use to in agriculture field.


2010 ◽  
Author(s):  
Steven R Evett ◽  
Robert C Schwartz ◽  
Robert J Lascano ◽  
Mathew G Pelletier

HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 916-921 ◽  
Author(s):  
Said A. Hamido ◽  
Kelly T. Morgan ◽  
Robert C. Ebel ◽  
Davie M. Kadyampakeni

Because of the decline in production and negative economic effects, there is an urgent need for strategies to reduce the impact of Huanglongbing (HLB) on citrus [Citrus ×sinensis (L.) Osbeck]. The objective of this study was to evaluate the impact of different irrigation schedules on total available soil water (TAW) and water uptake characteristics of citrus trees affected by HLB in central and southwest Florida. The study was initiated in Jan. 2014 for 2 years on 5-year-old sweet orange trees located in three commercial groves at Arcadia, Avon Park, and Immokalee, FL. Each grove had three irrigation scheduling treatments including the University of Florida, Institute of Food and Agricultural Sciences (UF/IFAS) recommendations, Daily irrigation, and an Intermediate treatment. All groves received similar volumes of water per week based on evapotranspiration (ETo) reported by the Florida Automated Weather Network. Sap flow (SF) measurements were taken for two trees per treatment for at least 10 days per site (twice/year). During those periods, leaf area, leaf area index (LAI), and stem water potential (Ψ) were determined. Also, TAW was determined using drainage curve and capacitance soil moisture sensors installed at incremental soil depths of 0–15, 15–30, and 30–45 cm. Results showed significant differences in average SF, LAI, Ψ, and TAW measurements among treatments. Diurnal SF value under daily irrigation treatment increased by 91%, 51%, and 105% compared with UF/IFAS irrigation in Arcadia, Avon Park, and Immokalee, respectively. Soil water contents (WCs) under daily treatment increased by 59%, 59%, and 70% compared with UF/IFAS irrigation treatment in Arcadia, Avon Park, and Immokalee, respectively. Our results indicated that daily irrigation improved tree water dynamics compared with IFAS or Intermediate irrigation scheduling treatments and reduced tree stress with the same volume of water.


Sign in / Sign up

Export Citation Format

Share Document