High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales

2022 ◽  
Vol 262 ◽  
pp. 107428
Author(s):  
Yifei Li ◽  
Shengzhi Huang ◽  
Hanye Wang ◽  
Xudong Zheng ◽  
Qiang Huang ◽  
...  
2020 ◽  
Vol 51 (1) ◽  
pp. 433-460 ◽  
Author(s):  
Paulo R. Guimarães

Interactions connect the units of ecological systems, forming networks. Individual-based networks characterize variation in niches among individuals within populations. These individual-based networks merge with each other, forming species-based networks and food webs that describe the architecture of ecological communities. Networks at broader spatiotemporal scales portray the structure of ecological interactions across landscapes and over macroevolutionary time. Here, I review the patterns observed in ecological networks across multiple levels of biological organization. A fundamental challenge is to understand the amount of interdependence as we move from individual-based networks to species-based networks and beyond. Despite the uneven distribution of studies, regularities in network structure emerge across scales due to the fundamental architectural patterns shared by complex networks and the interplay between traits and numerical effects. I illustrate the integration of these organizational scales by exploring the consequences of the emergence of highly connected species for network structures across scales.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1726 ◽  
Author(s):  
Yizhi Han ◽  
Xiaojing Bai ◽  
Wei Shao ◽  
Jie Wang

Soil moisture is an essential variable in the land surface ecosystem, which plays an important role in agricultural drought monitoring, crop status monitoring, and crop yield prediction. High-resolution radar data can be combined with optical remote-sensing data to provide a new approach to estimate high-resolution soil moisture over vegetated areas. In this paper, the Sentinel-1A data and the Moderate Resolution Imaging Spectroradiometer (MODIS) data are combined to retrieve soil moisture over agricultural fields. The advanced integral equation model (AIEM) is utilized to calculate the scattering contribution of the bare soil surface. The water cloud model (WCM) is applied to model the backscattering coefficient of vegetated areas, which use two vegetation parameters to parameterize the scattering and attenuation properties of vegetation. Four different vegetation parameters extracted from MODIS products are combined to predict the scattering contribution of vegetation, including the leaf area index (LAI), the fraction of photosynthetically active radiation (FPAR), normalized difference vegetation index (NDVI), and the enhanced vegetation index (EVI). The effective roughness parameters are chosen to parameterize the AIEM. The Sentinel-1A and MODIS data in 2017 are used to calibrate the coupled model, and the datasets in 2018 are used for soil moisture estimation. The calibration results indicate that the Sentinel-1A backscattering coefficient can be accurately predicted by the coupled model with the Pearson correlation coefficient (R) ranging from 0.58 to 0.81 and a root mean square error (RMSE) ranging from 0.996 to 1.401 dB. The modeled results show that the retrieved soil moisture can capture the seasonal dynamics of soil moisture with R ranging from 0.74 to 0.81. With the different vegetation parameter combinations used for parameterizing the scattering contribution of the canopy, the importance of suitable vegetation parameters for describing the scattering and attenuation properties of vegetation is confirmed. The LAI is recommended to characterize the scattering properties. There is no obvious clue for selecting vegetation descriptors to characterize the attenuation properties of vegetation. These promising results confirm the feasibility and validity of the coupled model for soil moisture retrieval from the Sentinel-1A and MODIS data.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xianyong Meng ◽  
Hao Wang ◽  
Ji Chen ◽  
Mingxiang Yang ◽  
Zhihua Pan

AbstractSoil moisture plays an important role in land-atmosphere interactions, agricultural drought monitoring, and water resource management, particularly across arid regions. However, it is challenging to simulate soil moisture of high spatial resolution and to evaluate soil moisture at fine spatial resolution in arid regions in Northwest China due to considerable uncertainties in forcing data and limited in situ measurements. Then, the data set was used to produce the 1 km high-resolution atmospheric forcing datasets and to drive the Community Land Model version 3.5 (CLM3.5) for simulating spatiotemporally continuous surface soil moisture. The capabilities of soil moisture simulation using CLM3.5 forced by the XJLDAS-driven field were validated against data obtained at three soil layers (0–10, 0–20, and 0–50 cm) from 54 soil moisture stations in Xinjiang. Results show that the simulated soil moisture agreed well with the observations [CORR > 0.952], and the intra-annual soil moisture in Xinjiang gradually increased during May through August. The main factors that affect changes in soil moisture across the study region were precipitation and snowmelt. The overall finding of this study is that an XJLDAS, high-resolution forcing data driven CLM3.5 can be used to generate accurate and continuous soil moisture of high resolution (1km) in Xinjiang. This study can help understand the spatiotemporal features of the soil moisture, and provide important input for hydrological studies and agricultural water resources management over the arid region.


2021 ◽  
Vol 13 (6) ◽  
pp. 1112
Author(s):  
Vivien-Georgiana Stefan ◽  
Gianfranco Indrio ◽  
Maria-José Escorihuela ◽  
Pere Quintana-Seguí ◽  
Josep Maria Villar

Root-zone soil moisture (RZSM) plays a key role for most water and energy budgets, as it is particularly relevant in controlling plant transpiration and hydraulic redistribution. RZSM data is needed for a variety of different applications, such as forecasting crop yields, improving flood predictions and monitoring agricultural drought, among others. Remote sensing provides surface soil moisture (SSM) retrievals, whose key advantage is the large spatial coverage on a systematic basis. This study tests a simple method to retrieve RZSM estimates from high-resolution SSM derived from SMAP (Soil Moisture Active Passive). A recursive exponential filter using a time constant τ is calibrated per land cover type, which uses as an intermediate step a long-term ISBA-DIF (Interaction Soil Biosphere Atmosphere—Diffusion scheme) dataset over an area located in Catalonia, NE of Spain. The τ values thus obtained are then used as an input to the same recursive exponential filter, to derive 1 km resolution RZSM estimates from 1 km SMAP SSM, which are obtained from the original data by downscaling to a 1 km resolution, through the DISPATCH (DISaggregation based on a Physical and Theoretical scale CHange) methodology. The results are then validated with scaled in situ observations at different depths, over two different areas, one representative of rainfed crops, and the other of irrigated crops. In general, the estimates agree well with the observations over the rainfed crops, especially at a 10 cm and 25 cm depth. Nash–Sutcliffe (NS) scores ranging between 0.33 and 0.58, and between 0.37 and 0.56 have been found, respectively. Correlation coefficients for these depths are high, between 0.76 and 0.91 (10 cm), and between 0.71 and 0.90 (25 cm). For the irrigated sites, results are poorer (partly due to the extremely high heterogeneity present), with NS scores ranging between −2.57 and 0.16, and correlations ranging between −0.56 and 0.48 at 25 cm. Given the strong correlations and NS scores found in the surface, the sensitivity of the filter to different τ values was investigated. For the rainfed site, it was found, as expected, with increasing τ, increasing NS and correlations with the deeper layers, suggesting a better coupling. Nevertheless, a strong correlation with the surface (5 cm) or shallower depths (10 cm) observed over certain sites indicates a certain lack of skill of the filter to represent processes which occur at lower levels in the SM column. All in all, a calibration accounting for the vegetation was shown to be an adequate methodology in applying the recursive exponential filter to derive the RZSM estimates over large areas. Nevertheless, the relative shallow surface at which the estimates correlate in some cases seem to indicate that an effect of evapotranspiration in the profile is not well captured by the filter.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lauriane Ribas-Deulofeu ◽  
Pierre-Alexandre Château ◽  
Vianney Denis ◽  
Chaolun Allen Chen

Structural complexity is an important feature to understand reef resilience abilities, through its role in mediating predator-prey interactions, regulating competition, and promoting recruitment. Most of the current methods used to measure reef structural complexity fail to quantify the contributions of fine and coarse scales of rugosity simultaneously, while other methods require heavy data computation. In this study, we propose estimating reef structural complexity based on high-resolution depth profiles to quantify the contributions of both fine and coarse rugosities. We adapted the root mean square of the deviation from the assessed surface profile (Rq) with polynomials. The efficiency of the proposed method was tested on nine theoretical cases and 50 in situ transects from South Taiwan, and compared to both the chain method and the visual rugosity index commonly employed to characterize reef structural complexity. The Rq indices proposed as rugosity estimators in this study consider multiple levels of reef rugosity, which the chain method and the visual rugosity index fail to apprehend. Furthermore, relationships were found between Rq scores and specific functional groups in the benthic community. Indeed, the fine scale rugosity of the South Taiwan reefs mainly comes from biotic components such as hard corals, while their coarse scale rugosity is essentially provided by the topographic variations that reflect the geological context of the reefs. This approach allows identifying the component of the rugosity that could be managed and which could, ultimately, improve strategies designed for conservation.


Author(s):  
J.-P. Lagouarde ◽  
B. K. Bhattacharya ◽  
P. Crébassol ◽  
P. Gamet ◽  
D. Adlakha ◽  
...  

<p><strong>Abstract.</strong> The Indian and French Space Agencies, ISRO and CNES, have conceptualized a space-borne Thermal Infrared Reflectance (TIR) mission, TRISHNA (Thermal infRared Imaging Satellite for High-resolution Natural Resource Assessment). The primary design drivers of TRISHNA are the monitoring of (i) terrestrial water stress and use, and of (ii) coastal and continental water. A suit of four TIR bands and six optical bands is planned. The TIR bands will be centred at 8.6&amp;thinsp;&amp;mu;m, 9.1&amp;thinsp;&amp;mu;m, 10.3&amp;thinsp;&amp;mu;m and 11.5&amp;thinsp;&amp;mu;m to provide noon-night global observations at 57m nadir resolution over land and coastal regions. The field of view (FOV) is &amp;plusmn;34&amp;deg; and the orbit of 761&amp;thinsp;km altitude was designed to allow 3 sub-cycle acquisitions during the 8-day cycle. The optical bands correspond to blue, green, red, and NIR plus two SWIR bands at 1.38&amp;thinsp;&amp;mu;m and 1.61&amp;thinsp;&amp;mu;m. The green, red, NIR and the 1.61&amp;thinsp;&amp;mu;m SWIR bands will have better radiometry quality than those of AWiFS. ISRO and CNES will develop optical and TIR payloads, respectively. Assessing evapotranspiration and furthermore Gross and Net Primary Productivity (GPP and NPP) will in turn assist in quantifying water use in rainfed and irrigated agriculture, water stress and water use efficiency, with expected applications to agricultural drought and early warning, crop yield prediction, water allocation, implementation of water rights, crop insurance business and agro-advisories to farmers. The other scientific objectives of TRISHNA are also briefly described. TRISHNA instrument will fly aboard a ISRO spacecraft scheduled to be launched from 2024 for a minimum period of 5 years’ mission lifetime.</p>


2019 ◽  
Vol 50 (4) ◽  
pp. 1096-1119 ◽  
Author(s):  
Xu Chen ◽  
Fa-wen Li ◽  
Yi-xuan Wang ◽  
Ping Feng ◽  
Rui-zhe Yang

Abstract To fully reveal drought propagation mechanism and effectively mitigate drought, it is of importance to synthesize investigating different types of droughts; specifically, the propagation from meteorological to agricultural droughts and from agricultural to hydrological droughts, as well as their potential driving factors. The results suggested that: (1) the Standardized Precipitation Evapotranspiration Index (SPEI) is a better indicator for detecting drought onset, the Standardized Soil Index (SSI) can better describe drought persistence, and the Standardized Runoff Index (SRI) can depict the termination of drought; (2) the propagation time from meteorological to agricultural droughts, as well as that from agricultural to hydrological droughts, showed remarkable seasonal characteristics in the Luanhe River basin; (3) the significant influence of the Niño 1 + 2 + 3 + 4, Niño 3.4, Southern Oscillation Index (SOI), Multivariate ENSO Index (MEI), and Atlantic Multidecadal Oscillation (AOM) on meteorological drought was concentrated in the 16–88-month periods, as well as the decadal scale of 99–164-month periods, the significant influence of Niño 4, Niño 3.4, MEI, and SOI on agricultural drought was concentrated in the 16–99-month periods, as well as the decadal scale of 99–187-month periods, and the significant influence of Niño 4 and AOM on hydrological drought was concentrated in the 16–64-month periods, as well as the decadal scale of 104–177-month periods.


2021 ◽  
Author(s):  
Ido Caspy ◽  
Maria Fadeeva ◽  
Yuval Mazor ◽  
Nathan Nelson

Photosystem II (PSII) generates an oxidant whose redox potential is high enough to enable water oxidation, a substrate so abundant that it assures a practically unlimited electron source for life on earth. Our knowledge on the mechanism of water photooxidation was greatly advanced by high-resolution structures of prokaryotic PSII. Here we show high-resolution structures of eukaryotic PSII from the green algae Dunaliella salina at two distinct conformations. The conformers are also present in stacked PSII, exhibiting flexibility that is relevant to the grana formation in chloroplasts of the green lineage. CP29, one of PSII associated light harvesting antennae, plays a major role in distinguishing the two conformations of the supercomplex. We also show that the stacked PSII dimer, a form suggested to support the organization of thylakoid membranes, can appear in many different orientations providing a flexible stacking mechanism for the arrangement of grana stacks in thylakoids. Our findings provide a structural basis for the heterogenous nature of the eukaryotic PSII on multiple levels.


Sign in / Sign up

Export Citation Format

Share Document