Co-production of lutein and fatty acid in microalga Chlamydomonas sp. JSC4 in response to different temperatures with gene expression profiles

2020 ◽  
Vol 47 ◽  
pp. 101821 ◽  
Author(s):  
Ruijuan Ma ◽  
Xurui Zhao ◽  
Shih-Hsin Ho ◽  
Xinguo Shi ◽  
Lemian Liu ◽  
...  
2015 ◽  
Vol 72 (1) ◽  
pp. 3-32
Author(s):  
Mariana Petkova ◽  
Wun S. Chao ◽  
Leonard Cook ◽  
Mark West ◽  
Mukhlesur Rahman ◽  
...  

Abstract Fatty acid levels and gene expression profiles for selected genes associated with the synthesis of fatty acids (FA), triacylglycerol, and oil body proteins were examined in three oilseed rape (Brassica napus) cultivars that have utility for cultivar development in our spring canola breeding program. The seed oil content of Bronowski, Q2, and Westar was 39.0, 40.1, and 40.6%, respectively at 40 days after flowering (DAF). During the 20 to 40 day period of seed development, cultivars had varying levels of palmitic, stearic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acid. In general, the percentage of each FA was similar among the cultivars during seed development. However, the level of oleic acid was lower and the levels of eicosenoic acid and erucic acid were higher in Bronowski than in Q2 and Westar seeds; linoleic acid also tended to be lower in Bronowski. Gene expression among the cultivars was similar from 10 to 40 DAF. The few exceptions were that expression of KAS1 and SAD were higher in Westar and Q2 than in Bronowski at 25 DAF, SAD was highest in Q2, intermediate in Westar, and lowest in Bronowski at 35 DAF, FAD2 was higher in Q2 than in Bronowski at 35 DAF, FAD3 was higher in Q2 than in Bronowski at 15 DAF and Q2 and Westar at 25 and 30 DAF, and FAE1 was higher in Westar and Q2 than in Bronowski at 30 DAF. Correlation analysis for gene expression against DAF for each genotype supported a common trend in gene expression among the three cultivars with gene expression tending to decrease over time; except for LPAAT, which tended to increase. The correlation between the level of FAs and expression of genes by genotype indicated no general trend; rather correlations seem to depend on the genotype.


2011 ◽  
Vol 108 (5) ◽  
pp. 858-863 ◽  
Author(s):  
Beate Hiller ◽  
Jean-Francois Hocquette ◽  
Isabelle Cassar-Malek ◽  
Gerd Nuernberg ◽  
Karin Nuernberg

Gene expression profiles of bovine longissimus muscle as affected by dietary n-3 v.n-6 fatty acid (FA) intervention were analysed by microarray pre-screening of >3000 muscle biology/meat quality-related genes as well as subsequent quantitative RT-PCR gene expression validation of genes encoding lipogenesis-related transcription factors (CCAAT/enhancer-binding protein β, sterol regulatory element-binding transcription factor 1), key-lipogenic enzymes (acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD)), lipid storage-associated proteins (adipose differentiation-related protein (ADFP)) and muscle biology-related proteins (cholinergic receptor, nicotinic, α1, farnesyl diphosphate farnesyl transferase 1, sema domain 3C (SEMA3C)). Down-regulation of ACACA (P = 0·00), FASN (P = 0·09) and SCD (P = 0·02) gene expression upon an n-3 FA intervention directly corresponded to reduced SFA, MUFA and total FA concentrations in longissimus muscle, whereas changes in ADFP (P = 0·00) and SEMA3C (P = 0·05) gene expression indicated improved muscle function via enhanced energy metabolism, vasculogenesis, innervation and mediator synthesis. The present study highlights the significance of dietary n-3 FA intervention on muscle development, maintenance and function, which are relevant for meat quality tailoring of bovine tissues and modulating animal production-relevant physiological processes.


2019 ◽  
Vol 20 (22) ◽  
pp. 5682 ◽  
Author(s):  
Yusuke Sasaki ◽  
Sana Raza-Iqbal ◽  
Toshiya Tanaka ◽  
Kentaro Murakami ◽  
Motonobu Anai ◽  
...  

Pemafibrate is the first clinically-available selective peroxisome proliferator-activated receptor α modulator (SPPARMα) that has been shown to effectively improve hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. Global gene expression analysis reveals that the activation of PPARα by pemafibrate induces fatty acid (FA) uptake, binding, and mitochondrial or peroxisomal oxidation as well as ketogenesis in mouse liver. Pemafibrate most profoundly induces HMGCS2 and PDK4, which regulate the rate-limiting step of ketogenesis and glucose oxidation, respectively, compared to other fatty acid metabolic genes in human hepatocytes. This suggests that PPARα plays a crucial role in nutrient flux in the human liver. Additionally, pemafibrate induces clinically favorable genes, such as ABCA1, FGF21, and VLDLR. Furthermore, pemafibrate shows anti-inflammatory effects in vascular endothelial cells. Pemafibrate is predicted to exhibit beneficial effects in patients with atherogenic dyslipidemia and diabetic microvascular complications.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e67270 ◽  
Author(s):  
Karina Standahl Olsen ◽  
Christopher Fenton ◽  
Livar Frøyland ◽  
Marit Waaseth ◽  
Ruth H. Paulssen ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 349-350
Author(s):  
Gaelle Fromont ◽  
Michel Vidaud ◽  
Alain Latil ◽  
Guy Vallancien ◽  
Pierre Validire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document