Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro

2011 ◽  
Vol 169 (3-4) ◽  
pp. 185-193 ◽  
Author(s):  
H.Y. Tan ◽  
C.C. Sieo ◽  
N. Abdullah ◽  
J.B. Liang ◽  
X.D. Huang ◽  
...  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
Aarón A. Molho-Ortiz ◽  
Atmir Romero-Pérez ◽  
Efrén Ramírez-Bribiesca ◽  
Claudia C. Márquez-Mota ◽  
Francisco A. Castrejón-Pineda ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 635 ◽  
Author(s):  
Ives C. S. Bueno ◽  
Roberta A. Brandi ◽  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
James Pierre Muir

Animal feeding behavior and diet composition determine rumen fermentation responses and its microbial characteristics. This study aimed to evaluate the rumen fermentation kinetics of domestic ruminants feeding diets with or without condensed tannins (CT). Holstein dairy cows, Nelore beef cattle, Mediterranean water buffalo, Santa Inês sheep and Saanen goats were used as inoculum donors (three animals of each species). The substrates were maize silage (Zea mays), fresh elephant grass (Pennisetum purpureum), Tifton-85 hay (Cynodon spp.) and fresh alfalfa (Medicago sativa). Acacia (Acacia molissima) extract was used as the external CT source. The in vitro semi-automated gas production technique was used to assess the fermentation kinetics. The experimental design was completely randomized with five inoculum sources (animal species), four substrates (feeds) and two treatments (with or without extract). The inclusion of CT caused more severe effects in grazing ruminants than selector ruminants.


2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


2011 ◽  
Vol 166-167 ◽  
pp. 155-162 ◽  
Author(s):  
R.C. Araujo ◽  
A.V. Pires ◽  
G.B. Mourão ◽  
A.L. Abdalla ◽  
S.M.A. Sallam

2014 ◽  
Vol 27 (11) ◽  
pp. 1562-1570 ◽  
Author(s):  
Alvin P. Soriano ◽  
Lovelia L. Mamuad ◽  
Seon-Ho Kim ◽  
Yeon Jae Choi ◽  
Chang Dae Jeong ◽  
...  

2012 ◽  
Vol 178 (1-2) ◽  
pp. 48-56 ◽  
Author(s):  
Vincent Niderkorn ◽  
Irene Mueller-Harvey ◽  
Aline Le Morvan ◽  
Jocelyne Aufrère

Sign in / Sign up

Export Citation Format

Share Document