Comparative effects of enzymolytic soybean meal and antibiotics in diets on growth performance, antioxidant capacity, immunity, and intestinal barrier function in weaned pigs

2019 ◽  
Vol 248 ◽  
pp. 47-58 ◽  
Author(s):  
X.K. Ma ◽  
Q.H. Shang ◽  
Q.Q. Wang ◽  
J.X. Hu ◽  
X.S. Piao
2021 ◽  
Author(s):  
Dingfa Wang ◽  
Luli Zhou ◽  
Hanlin Zhou ◽  
Guanyu Hou

Abstract Background: The effects of dietary supplementation with guava leaf extracts (GE) on growth performance, diarrhea and intestinal barrier function, as well as associated with its modulation of serum and fecal metabolic changes in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated.Method: Fifty weaned piglets (Duroc × Yorkshire × Landrace) from 5 pens (2 piglets per pen) were randomly divided into five groups: blank control group (BC), negative control group (NC), or those supplemented with 50 mg kg-1 (S50), 100 mg kg-1 (S100), or 200 (S200) mg kg-1 diet GE, respectively. On day 4, all piglets (except for BC) were orally challenged with about 1.0 × 109 colony-forming units (CFU) enterotoxigenic ETEC. After 28-day trial, growth performance, diarrhea incidence, intestinal barrier function and metabolomics of serum and fecal were investigated.Results: We demonstrated that dietary supplementation with GE (50-200 mg kg-1) reduced diarrhea incidence of piglets and increased expression of intestinal tight junction proteins (ZO-1, Occludin, Claudin-1) (P < 0.05) and sodium hydrogen exchanger 3 (NHE3) (P < 0.05). Moreover, dietary supplementation with GE (50-200 mg kg-1) upregulated level of tetrahydrofolic acid (THF) and reversed higher level of nicotinamide-adenine dinucleotide phosphate (NADP) caused by ETEC in serum compared with NC group (P < 0.05), and enhanced antioxidant ability of piglets. In addition, dietary addition with GE (100 mg kg-1) reversed the lower level of L-pipecolic acid caused by ETEC in feces compared with NC group (P < 0.05), and decreased oxidative stress response of piglets. Further, there were no differences (P > 0.05) in the final weight, average daily feed intake (ADFI) and F/G among dietary groups during the overall period, and piglets in S50 group has the higher average daily gain (ADG). Conclusion: Dietary supplementation with 50-200 mg kg-1 GE reduced diarrhea incidence of weaned piglets challenged by ETEC and exhibited positive effect on improving intestinal barrier function. Meanwhile, dietary addition with GE organized and redistributed energy resources through similar or dissimilar metabolic pathways, and finally enhanced antioxidant ability of piglets challenged by ETEC.


2021 ◽  
Author(s):  
Shuai Liu ◽  
Yunxia Xiong ◽  
Jingping Chen ◽  
Hao Xiao ◽  
Qiwen Wu ◽  
...  

Abstract BACKGROUND: The beneficial function of fermented feed in livestock industry has been widely investigated. However, little is known about the effects of fermented feed on different weaned-day piglets. This study aimed to investigate the effects of fermented diet on the growth performance, intestinal function and microbiota of piglets weaned at age of 21 days and 28 days.RESULTS: The results found that weaning on d 21 significantly increased (P < 0.05) ADG, and ADFI (calculated based on wet weight and dry matter), while reduced (P < 0.05) F: G, the activities of trypsin and lipase of jejunum and villus height of ileum, compared with 28-d weaning. The protein levels of Occludin, Claudin-1, ZO-1 of ileum in the groups weaning on d 21 were less (P < 0.05) than the groups weaning on d 28. Moreover, dietary supplementation with fermented diet upregulated (P < 0.05) Occludin, Claudin-1, ZO-1 proteins of ileum, compared with the groups treated with control diet both weaning on d 21 and d 28. In addition, dietary supplementation with fermented diet decreased (P < 0.05) the relative abundance of Clostridia (class) and increased (P < 0.05) Bacteroidia (class) level of cecal microbiota, compared with the groups treated with control diet both weaning on d 21 and d 28. However, supplementation with fermented diet did not affect the concentrations of short-chain fatty acids in the cecum (P > 0.05).CONCLUSION: Therefore, our data suggest that feed digestibility is improved in piglets weaned at 21 days, but intestinal barrier function is weaker than in piglets weaned at 28 days. However, compared with feeding control diet, supplementation with fermented diet both improved feed conversion and intestinal barrier function of weaned piglets by modulating intestinal microbiota.


2015 ◽  
Vol 95 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Bich Van Le Thanh ◽  
Martin Lessard ◽  
Younès Chorfi ◽  
Frédéric Guay

Thanh, B. V. L., Lessard, M., Chorfi, Y. and Guay, F. 2015. The efficacy of anti-mycotoxin feed additives in preventing the adverse effects of wheat naturally contaminated with Fusarium mycotoxins on performance, intestinal barrier function and nutrient digestibility and retention in weanling pigs. Can. J. Anim. Sci. 95: 197–209. This study was designed to determine the effect of feeding deoxynivalenol (DON) contaminated wheat to growing pigs on growth performance, digestibility and retention of nitrogen (N), phosphorus (P) and calcium (Ca). Secondly, we wished to evaluate the potential of four commercial anti-mycotoxin additives in preventing the adverse effects of DON. Sixty piglets (6.0 kg body weight) were assigned to six different corn-soybean meal-wheat diets (control diet: <0.5 mg kg−1 DON; contaminated diet (DON-contaminated): 4 mg kg−1; and four contaminated diets supplemented with a different anti-mycotoxin additive: DON+GLUC (glucomannan), DON+YBP (yeast, live bacteria, enzymes, plant extracts), DON+ALU (aluminosilicate) and DON+PC (preservation components). Piglets were housed individually in pens for 7 d and then transferred to metabolic crates for urine and feces collection for 7 d. At the end of these 2 wk, mannitol and lactulose doses were given by oral administration. Urine was collected for 24 h for an evaluation of barrier integrity of intestinal mucosa. The piglets were then euthanatized and intestinal samples collected for morphology studies. Feeding DON-contaminated wheat reduced average daily feed intake, average daily gain and G:F ratio compared with the control diet (P<0.05). Only DON+PC diet restored the growth performance of piglets fed DON-contaminated diet. Daily retention of N and P was not affected by DON contamination or anti-mycotoxin additives, but retention of Ca was higher in piglets fed the DON-contaminated diets than the control diet. DON-contaminated diet reduced digestibility of dry matter, gross energy and fat, villi height in jejunum, and recovery of mannitol and lactulose compared with the control diet (P<0.05). Finally, DON concentrations in serum from piglets fed the DON-contaminated diets were higher than in the control diet (P<0.05). Piglets fed DON-contaminated wheat had reduced growth possibly caused by impaired jejunal morphology and decreased digestibility of energy and fat.


2020 ◽  
Author(s):  
Tiande Zou ◽  
Jin Yang ◽  
Xiaobo Guo ◽  
Qin He ◽  
Zirui Wang ◽  
...  

Abstract Background: Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs.Results: In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-d trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-d trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, Claudin-1 and Occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05).Conclusions: These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.


Sign in / Sign up

Export Citation Format

Share Document