Concentrations of digestible and metabolizable energy and amino acid digestibility by growing pigs may be reduced by autoclaving soybean meal

2020 ◽  
Vol 269 ◽  
pp. 114621
Author(s):  
Maryane S.F. Oliveira ◽  
Markus K. Wiltafsky ◽  
Su A. Lee ◽  
Woong Bi Kwon ◽  
Hans H. Stein
Author(s):  
Chan Sol Park ◽  
Ayodeji Simeon Aderibigbe ◽  
Darryl Ragland ◽  
Olayiwola Adeola

Abstract Energy values and amino acid (AA) digestibility of dried yeast (DY) and soybean meal (SBM) were determined in 2 experiments with growing pigs. Experiment 1 was conducted to determine the digestible energy (DE) and metabolizable energy (ME) in DY and SBM. Thirty barrows with a mean initial body weight (BW) of 20.6 kg (SD = 1.04) were assigned to 5 dietary treatments in a randomized complete block design with period and BW as blocking factors. A reference diet was prepared with corn, canola meal, and soybean oil as energy-contributing ingredients. Four additional diets were prepared by adding 5 and 10% DY or SBM at the expense of energy-contributing ingredients in the reference diet. The ratio of corn, canola meal, and soybean oil was kept consistent across the experimental diets. Each experimental period consisted of 5-d adaptation and 5-d quantitative collection of feces and urine. Test ingredient-associated DE or ME intake (kcal/d) was regressed against test ingredient intake [kg dry matter (DM)/d] to estimate the DE or ME in test ingredients as the slope of linear regression model. The DE in DY was estimated at 3,933 kcal/kg DM, which was not different from the estimated DE in SBM at 4,020 kcal/kg DM. Similarly, there was no difference between DY and SBM in the estimated ME (3,431 and 3,756 kcal/kg DM, respectively). Experiment 2 was conducted to determine the standardized ileal digestibility (SID) of AA in DY and SBM. Twenty-one barrows with a mean initial BW of 20.0 kg (SD = 1.31) were surgically fitted with T-cannulas at the distal ileum and assigned to 3 dietary treatments in a randomized complete block design with BW as a blocking factor. Two semi-purified diets containing DY or SBM as the sole nitrogen source and one nitrogen-free diet (NFD) were prepared. The NFD was used to estimate the basal ileal endogenous losses of CP and AA. Pigs were fed the 3 diets for 5 d as adaptation, followed by 2 d of feeding with ileal digesta collection. The SID of AA, except Gly and Pro, in DY were less (P < 0.05) than in SBM. The SID of indispensable AA in DY ranged from 64.1% for Thr to 85.2% for Arg, and those in SBM ranged from 83.9% for Thr to 91.8% for Arg. In conclusion, energy values of DY are not different from those of SBM, whereas AA in DY are less digestible than in SBM. The estimated DE and ME as well as the SID of AA in DY and SBM can be used in diet formulation for growing pigs using these ingredients.


Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Charles Martin Nyachoti

Abstract An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates/treatment). The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121°C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P < 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P < 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 228 ◽  
Author(s):  
Zhengqun Liu ◽  
Ruqing Zhong ◽  
Liang Chen ◽  
Fei Xie ◽  
Kai Li ◽  
...  

This study was conducted to evaluate the effect of collection durations on the energy values and nutrient digestibility of high-fiber diets in growing pigs with a time-based total fecal collection method. A total of 24 barrows (body weight (BW): 31.1 ± 1.5 kg) were allotted to a completely randomized design with three diets. Diets included a corn–soybean meal (CSM) basal diet and two additional diets containing 20% sugar beet pulp (SBP) or defatted rice bran (DFRB) by replacing corn, soybean meal, and soybean oil in the CSM diet, respectively. Each diet was fed to eight barrows for a 7-day adaptation period followed by a 7-day total feces and urine collection period. The 7-day collection duration was divided into three collection phases, namely, phase 1 (days 8 to 11), phase 2 (days 11 to 13), and phase 3 (days 13 to 15). Then, similar portions of feces and urine from the different collection phases were composited into three additional samples (days 8 to 11, days 8 to 13, and days 8 to 15, respectively). The results showed that the digestible energy (DE), metabolizable energy (ME), and apparent total tract digestibility (ATTD) of gross energy (GE) and nutrient in experimental diets decreased linearly as the collection durations increased from a 3-day to a 7-day collection (p < 0.05). However, there were no differences in the energy values, GE, and nutrient digestibility of diets and of high-fiber ingredients between the 5-day and 7-day collection durations. In conclusion, this study suggests that a 5-day collection duration is adequate to determine the energy values and nutrient digestibility of high-fiber diets containing SBP or DFRB in growing pigs by the time-based total fecal collection method.


2020 ◽  
Vol 98 (7) ◽  
Author(s):  
Maryane S F Oliveira ◽  
Markus K Wiltafsky-Martin ◽  
Hans H Stein

Abstract Two experiments were conducted to test the hypothesis that both the degree of heating and the time that heat is applied will affect the concentration of DE and ME, and the apparent ileal digestibility (AID) and the standardized ileal digestibility (SID) of amino acids (AA) in 00-rapeseed meal (00-RSM) fed to growing pigs. The nine treatments were prepared using a conventional 00-RSM that was either not autoclaved or autoclaved at 110 °C for 15 or 30 min or at 150 °C for 3, 6, 9, 12, 15, or 18 min. In experiment 1, 20 growing barrows with an average initial BW of 21.2 ± 1.2 kg were randomly allotted to the 10 diets in a replicated 10 × 4 Youden square with 10 diets and four periods in each square. A corn-based basal diet and nine diets containing corn and each source of 00-RSM were formulated. Urine and fecal samples were collected for 5 d after 7 d of adaptation. In experiment 2, nine diets contained one of the nine sources of 00-RSM as the sole source of AA, and an N-free diet that was used to measure basal endogenous losses of AA and CP was formulated. Twenty growing barrows with an initial BW of 69.8 ± 5.7 kg had a T-cannula installed in the distal ileum and were allotted to a 10 × 7 Youden square design with 10 diets and 7 periods. Ileal digesta were collected on days 6 and 7 of each 7-d period. Results from the experiments indicated that there were no effects of autoclaving at 110 °C on DE and ME or on AID and SID of AA in 00-RSM, but DE and ME, and AID and SID of AA were less (P &lt; 0.01) if 00-RSM was autoclaved at 150 °C compared with 110 °C. At 150 °C, there were decreases (quadratic, P &lt; 0.05) in DE and ME, and in AID and SID of AA as heating time increased. In conclusion, autoclaving at 110 °C did not affect ME or SID of AA in 00-RSM, but autoclaving at 150 °C had negative effects on ME and SID of AA and the negative effects increased as heating time increased.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4541
Author(s):  
Tiago Junior Pasquetti ◽  
Paulo Cesar Pozza ◽  
Newton Tavares Escocard de Oliveira ◽  
Ricardo Vianna Nunes ◽  
Doglas Batista Lazzeri ◽  
...  

The aim of this study was to evaluate equations to predict the metabolizable energy (ME) of soybean meal (SBM) for swine. Seven SBM were used, which were analyzed for dry matter, crude protein, ether extract, neutral detergent fiber (NDF), acid detergent fiber (ADF), ash, calcium, phosphorus, solubility in potassium hydroxide (KOH) and urease index. To determine the ME of SBM, 32 barrows, with an average initial weight of 29.01 ± 3.64 kg, were used and distributed in a randomized blocks design, with seven treatments and four replicates. To validate the prediction equations, linear regression models were adjusted, using observed values of ME (metabolism trial) as a function of the estimated ME (obtained by applying the chemical composition of the SBM in selected equations found in the literature). The existence of regression was evaluated by the “t” test, partially applied to each parameter (?0 and ?1). The validation of the prediction models of first degree was obtained by accepting the joint null hypothesis ?0 = 0 and ?1 = 1. The equations ME = 5.42 - 17.2FDN - 19.4MM + 0.709GE and ME= 1099 + 0.740GE - 5.5MM - 3.7NDF are effective for estimating the ME of SBM for growing pigs.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 166-166
Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Martin Nyachoti

Abstract An experiment was performed to evaluate the energy contents of extruded-expelled soybean meal (EESBM) and the effects of thermal treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments to give six replicates per treatment. The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM in a 70:30 ratio. Intact EESBM was autoclaved at 120°C for 60 mins to make heat-treated EESBM (heat-EESBM). Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy contents of the tested DESBM were calculated by using the difference method. All data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P &lt; 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P &lt; 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P &lt; 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM but comparable net energy contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and net energy are 4,591 kcal/kg, 4,099 kcal/kg, and 3,242 kcal/kg on a DM basis. However, thermal damage during EESBM production should be considered in terms of DE and ME content of EESBM fed to growing pigs.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1168
Author(s):  
Lu Wang ◽  
Qile Hu ◽  
Peili Li ◽  
Changhua Lai ◽  
Defa Li ◽  
...  

The study was conducted to develop and validate an equation to predict the metabolizable energy (ME) of double-low rapeseed cakes (DLRSC) for growing pigs based on their chemical compositions. In Experiment 1, 66 growing pigs (initial body weight 36.6 ± 4.1 kg) were allotted randomly to a completely randomized design with 11 diets. The diets included a corn–soybean meal basal diet and 10 test diets containing 19.22% DLRSC supplemented at the expense of corn, soybean meal, and lysine. Neutral detergent fiber (NDF), crude fiber (CF), and gross energy (GE) were the best predictors to determine ME. The best-fit prediction equation of ME (MJ/kg) was ME = 9.33 − 0.09 × NDF − 0.25 × CF + 0.59 × GE (R2 = 0.93). In Experiment 2, a total of 144 growing pigs (initial body weight 29.7 ± 2.7 kg), with six pigs per pen and six pens per treatment, were assigned randomly to four treatments in a completely randomized block design for a 28-day feeding trial. A corn–soybean meal basal diet was prepared, and three additional diets were formulated by adding 7%, 14%, and 21% DLRSC to the basal diet at the expense of soybean meal. All diets were formulated to provide equal standardized ileal digestibility (SID) Lys/ME ratio and SID essential amino acids/SID Lys ratio. Increasing dietary levels of DLRSC had no effect on average daily feed intake, average daily gain, and feed-to-gain ratio. The caloric efficiency of ME (31.83, 32.44, 31.95, and 32.69 MJ/kg, respectively) was not changed by increasing the dietary concentration of DLRSC. Increasing dietary levels of DLRSC linearly reduced (p < 0.05) the concentrations of triiodothyronine and tetraiodothyronine in serum, as well as apparent total tract digestibility of DM, GE, crude protein, acid detergent fiber, and organic matter of the diet. In conclusion, the ME prediction equation obtained in Experiment 1 accurately estimates the ME value of DLRSC fed to growing pigs.


Sign in / Sign up

Export Citation Format

Share Document