Determination of surface composition of alloy nanoparticles and relationships with catalytic activity in Pd–Cu/SiO2 cogelled xerogel catalysts

2004 ◽  
Vol 270 (1-2) ◽  
pp. 201-208 ◽  
Author(s):  
Stéphanie Lambert ◽  
Benoı̂t Heinrichs ◽  
Alain Brasseur ◽  
André Rulmont ◽  
Jean-Paul Pirard
RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24097-24102 ◽  
Author(s):  
Betül Çelik ◽  
Yunus Yıldız ◽  
Hakan Sert ◽  
Esma Erken ◽  
Yagmur Koşkun ◽  
...  

Monodispersed PdCo@PVP NPs showed record catalytic activity, giving the best catalytic performance yet with a very high turnover frequency.


Author(s):  
Alexey V. Kuzikov ◽  
Tatiana A. Filippova ◽  
Rami A. Masamrekh ◽  
Victoria V. Shumyantseva

Author(s):  
Hang Lei ◽  
Shangjing Yang ◽  
Runquan Lei ◽  
Qing Zhong ◽  
Qixiang Wan ◽  
...  

Insufficient catalytic activity and self-restacking of 2D MXenes during catalytic processes would lead to limited number of active sites, sluggish ionic kinetics and poor durability, extremely restricting its application in...


2017 ◽  
Vol 7 (20) ◽  
pp. 4629-4639 ◽  
Author(s):  
M. Tonelli ◽  
M. Aouine ◽  
L. Massin ◽  
V. Belliere Baca ◽  
J. M. M. Millet

Multicomponent FeMoTeO catalysts have been synthesized and studied for mild propene oxidation to acrolein.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257777
Author(s):  
Anuja Tripathi ◽  
Kenneth D. Harris ◽  
Anastasia L. Elias

Nitrogen-functionalization is an effective means of improving the catalytic performances of nanozymes. In the present work, plasma-assisted nitrogen modification of nanocolumnar Ni GLAD films was performed using an ammonia plasma, resulting in an improvement in the peroxidase-like catalytic performance of the porous, nanostructured Ni films. The plasma-treated nanozymes were characterized by TEM, SEM, XRD, and XPS, revealing a nitrogen-rich surface composition. Increased surface wettability was observed after ammonia plasma treatment, and the resulting nitrogen-functionalized Ni GLAD films presented dramatically enhanced peroxidase-like catalytic activity. The optimal time for plasma treatment was determined to be 120 s; when used to catalyze the oxidation of the colorimetric substrate TMB in the presence of H2O2, Ni films subjected to 120 s of plasma treatment yielded a much higher maximum reaction velocity (3.7⊆10−8 M/s vs. 2.3⊆10−8 M/s) and lower Michaelis-Menten coefficient (0.17 mM vs. 0.23 mM) than pristine Ni films with the same morphology. Additionally, we demonstrate the application of the nanozyme in a gravity-driven, continuous catalytic reaction device. Such a controllable plasma treatment strategy may open a new door toward surface-functionalized nanozymes with improved catalytic performance and potential applications in flow-driven point-of-care devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2501
Author(s):  
Shuxin Chen ◽  
Xiaowen Lv ◽  
Jifan Shen ◽  
Siqi Pan ◽  
Zhiliang Jiang ◽  
...  

A new method for the determination of oxytetracycline (OTC) has been established by coupling the catalytic amplification reaction of copper nanoclusters (CuNCs) with the aptamer reaction. CuNCs prepared by a wet chemical method have the catalytic activity for the formation of gold nanoparticles (AuNPs) resulting from a HAuCl4-ethanol (En) reaction. The experimental results showed that OTC aptamer (Apt) can be adsorbed on the surface of CuNCs in a non-specific way, thus inhibiting its catalytic activity. When OTC was added to the solution, the OTC-Apt complex was generated by a specific reaction, which made the CuNCs desorb and restore their catalytic activity. With the increase of OTC, the recovery of the catalytic activity of CuNCs is strengthened, the reaction speed is accelerated, and the number of AuNPs is increased. The generated AuNPs exhibited surface enhanced Raman scattering (SERS) signals at 1615 cm−1 in the presence of Vitoria blue 4R (VB4R) molecular probes, and a resonance Rayleigh scattering (RRS) peak at 586 nm. There is a good linear relationship between the intensities of SERS, or RRS, and OTC concentration at the range of 37.5–300 ng/L or 37.5–225 ng/L, respectively. A new SERS and RRS assay for the determination of trace OTC based on the regulation of CuNCs catalysis was established.


Sign in / Sign up

Export Citation Format

Share Document