How we can measure the non-driving-task engagement in automated driving: Comparing flow experience and workload

2018 ◽  
Vol 67 ◽  
pp. 237-245 ◽  
Author(s):  
Sang Min Ko ◽  
Yong Gu Ji
Author(s):  
Bradley W. Weaver ◽  
Patricia R. DeLucia

Objective The aim of this paper was to synthesize the experimental research on factors that affect takeover performance during conditionally automated driving. Background For conditionally automated driving, the automated driving system (ADS) can handle the entire dynamic driving task but only for limited domains. When the system reaches a limit, the driver is responsible for taking over vehicle control, which may be affected by how much time they are provided to take over, what they were doing prior to the takeover, or the type of information provided to them during the takeover. Method Out of 8446 articles identified by a systematic literature search, 48 articles containing 51 experiments were included in the meta-analysis. Coded independent variables were time budget, non-driving related task engagement and resource demands, and information support during the takeover. Coded dependent variables were takeover timing and quality measures. Results Engaging in non-driving related tasks results in degraded takeover performance, particularly if it has overlapping resource demands with the driving task. Weak evidence suggests takeover performance is impaired with shorter time budgets. Current implementations of information support did not affect takeover performance. Conclusion Future research and implementation should focus on providing the driver more time to take over while automation is active and should further explore information support. Application The results of the current paper indicate the need for the development and deployment of vehicle-to-everything (V2X) services and driver monitoring.


Author(s):  
Niklas Grabbe ◽  
Michael Höcher ◽  
Alexander Thanos ◽  
Klaus Bengler

Automated driving offers great possibilities in traffic safety advancement. However, evidence of safety cannot be provided by current validation methods. One promising solution to overcome the approval trap (Winner, 2015) could be the scenario-based approach. Unfortunately, this approach still results in a huge number of test cases. One possible way out is to show the current, incorrect path in the argumentation and strategy of vehicle automation, and focus on the systemic mechanisms of road traffic safety. This paper therefore argues the case for defining relevant scenarios and analysing them systemically in order to ultimately reduce the test cases. The relevant scenarios are based on the strengths and weaknesses, in terms of the driving task, for both the human driver and automation. Finally, scenarios as criteria for exclusion are being proposed in order to systemically assess the contribution of the human driver and automation to road safety.


2021 ◽  
Vol 11 (1) ◽  
pp. 845-852
Author(s):  
Aleksandra Rodak ◽  
Paweł Budziszewski ◽  
Małgorzata Pędzierska ◽  
Mikołaj Kruszewski

Abstract In L3–L4 vehicles, driving task is performed primarily by automated driving system (ADS). Automation mode permits to engage in non-driving-related tasks; however, it necessitates continuous vigilance and attention. Although the driver may be distracted, a request to intervene may suddenly occur, requiring immediate and appropriate response to driving conditions. To increase safety, automated vehicles should be equipped with a Driver Intervention Performance Assessment module (DIPA), ensuring that the driver is able to take the control of the vehicle and maintain it safely. Otherwise, ADS should regain control from the driver and perform a minimal risk manoeuvre. The paper explains the essence of DIPA, indicates possible measures, and describes a concept of DIPA framework being developed in the project.


Author(s):  
Lucero Rodriguez Rodriguez ◽  
Carlos Bustamante Orellana ◽  
Jayci Landfair ◽  
Corey Magaldino ◽  
Mustafa Demir ◽  
...  

As technological advancements and lowered costs make self-driving cars available to more people, it becomes important to understand the dynamics of human-automation interactions for safety and efficacy. We used a dynamical approach to examine data from a previous study on simulated driving with an automated driving assistant. To maximize effect size in this preliminary study, we focused the current analysis on the two lowest and two highest-performing participants. Our visual comparisons were the utilization of the automated system and the impact of perturbations. Low-performing participants toggled and maintained reliance either on automation or themselves for longer periods of time. Decision making of high-performing participants was using the automation briefly and consistently throughout the driving task. Participants who displayed an early understanding of automation capabilities opted for tactical use. Further exploration of individual differences and automation usage styles will help to understand the optimal human-automation-team dynamic and increase safety and efficacy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erin E. Flynn-Evans ◽  
Lily R. Wong ◽  
Yukiyo Kuriyagawa ◽  
Nikhil Gowda ◽  
Patrick F. Cravalho ◽  
...  

AbstractHuman error has been implicated as a causal factor in a large proportion of road accidents. Automated driving systems purport to mitigate this risk, but self-driving systems that allow a driver to entirely disengage from the driving task also require the driver to monitor the environment and take control when necessary. Given that sleep loss impairs monitoring performance and there is a high prevalence of sleep deficiency in modern society, we hypothesized that supervising a self-driving vehicle would unmask latent sleepiness compared to manually controlled driving among individuals following their typical sleep schedules. We found that participants felt sleepier, had more involuntary transitions to sleep, had slower reaction times and more attentional failures, and showed substantial modifications in brain synchronization during and following an autonomous drive compared to a manually controlled drive. Our findings suggest that the introduction of partial self-driving capabilities in vehicles has the potential to paradoxically increase accident risk.


2021 ◽  
Author(s):  
Vishnu Radhakrishnan ◽  
Natasha Merat ◽  
Tyron Louw ◽  
Rafael Goncalves ◽  
Wei Lyu ◽  
...  

This driving simulator study, conducted as a part of Horizon2020-funded L3Pilot project, investigated how different car-following situations affected driver workload, within the context of vehicle automation. Electrocardiogram (ECG) and electrodermal activity (EDA)-based physiological metrics were used as objective indicators of workload, along with self-reported workload ratings. A total of 32 drivers were divided into two equal groups, based on whether they engaged in a non-driving related task (NDRT) during automation or monitored the drive. Drivers in both groups were exposed to two counterbalanced experimental drives, lasting ~18 minutes each, of Short (0.5 s) and Long (1.5 s) Time Headway conditions during automated car-following (ACF), which was followed by a takeover that happened with or without a lead vehicle. We observed that the workload on the driver due to the NDRT was significantly higher than both monitoring the drive during ACF and manual car-following (MCF). Furthermore, the results indicated that shorter THWs and the presence of a lead vehicle can significantly increase driver workload during takeover scenarios, potentially affecting the safety of the vehicle. This warrants further research into understanding safe time headway thresholds to be maintained by automated vehicles, without placing additional mental or attentional demands on the driver. To conclude, our results indicated that ECG and EDA signals are sensitive to variations in workload, and hence, warrants further investigation on the value of combining these two signals to assess driver workload in real-time, to help the system respond appropriately to the limitations of the driver and predict their performance in driving task if and when they have to resume manual control of the vehicle.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 442
Author(s):  
Jose Angel Matute-Peaspan ◽  
Joshue Perez ◽  
Asier Zubizarreta

Presently, in the event of a failure in Automated Driving Systems, control architectures rely on hardware redundancies over software solutions to assure reliability or wait for human interaction in takeover requests to achieve a minimal risk condition. As user confidence and final acceptance of this novel technology are strongly related to enabling safe states, automated fall-back strategies must be assured as a response to failures while the system is performing a dynamic driving task. In this work, a fail-operational control architecture approach and dead-reckoning strategy in case of positioning failures are developed and presented. A fail-operational system is capable of detecting failures in the last available positioning source, warning the decision stage to set up a fall-back strategy and planning a new trajectory in real time. The surrounding objects and road borders are considered during the vehicle motion control after failure, to avoid collisions and lane-keeping purposes. A case study based on a realistic urban scenario is simulated for testing and system verification. It shows that the proposed approach always bears in mind both the passenger’s safety and comfort during the fall-back maneuvering execution.


2019 ◽  
Vol 11 (3) ◽  
pp. 59-70
Author(s):  
Dina Kanaan ◽  
Suzan Ayas ◽  
Birsen Donmez ◽  
Martina Risteska ◽  
Joyita Chakraborty

This research utilized vehicle-based measures from a naturalistic driving dataset to detect distraction as indicated by long off-path glances (≥ 2 s) and whether the driver was engaged in a secondary (non-driving) task or not, as well as to estimate motor control difficulty associated with the driving environment (i.e. curvature and poor surface conditions). Advanced driver assistance systems can exploit such driver behavior models to better support the driver and improve safety. Given the temporal nature of vehicle-based measures, Hidden Markov Models (HMMs) were utilized; GPS speed and steering wheel position were used to classify the existence of off-path glances (yes vs. no) and secondary task engagement (yes vs. no); lateral (x-axis) and longitudinal (y-axis) acceleration were used to classify motor control difficulty (lower vs. higher). Best classification accuracies were achieved for identifying cases of long off-path glances and secondary task engagement with both accuracies of 77%.


Author(s):  
Nicole M. Corcoran ◽  
Daniel V. McGehee ◽  
T. Zachary Noonan

In 2019, industry is in the testing stages of level 4 SAE/NHTSA automated vehicles. While in testing, L4 vehicles require a safety driver to monitor the driving task at all times. These specially trained drivers must take back control if the vehicle doesn’t seem to be responding correctly to the ever-changing roadway and environment. Research suggests that monitoring the driving task can lead to a decrease in vigilance over time. Recently, Waymo publicly released takeover request and mileage data on its 2018 L4 autonomous vehicle takeover requests. From this data, which was represented in mileage, we created temporal metric which showed that there were typically 150-250 hours without a takeover request. From this we suggest that there may be a decrement in vigilance for Waymo safety drivers. While there are still many unknowns, we suggest Waymo release takeover requests in terms of time rather than mileage and provide more information on the operational design domains of these vehicles. Expanding the content of this publicly-released data could then give researchers and the public more understanding of the conditions under which safety drivers are functioning.


Author(s):  
Dengbo He ◽  
Birsen Donmez

State-of-the-art vehicle automation requires drivers to visually monitor the driving environment and the automation (through interfaces and vehicle’s actions) and intervene when necessary. However, as evidenced by recent automated vehicle crashes and laboratory studies, drivers are not always able to step in when the automation fails. Research points to the increase in distraction or secondary-task engagement in the presence of automation as a potential reason. However, previous research on secondary-task engagement in automated vehicles mainly focused on experienced drivers. This issue may be amplified for novice drivers with less driving skill. In this paper, we compared secondary-task engagement behaviors of novice and experienced drivers both in manual (non-automated) and automated driving settings in a driving simulator. A self-paced visual-manual secondary task presented on an in-vehicle display was utilized. Phase 1 of the study included 32 drivers (16 novice) who drove the simulator manually. In Phase 2, another set of 32 drivers (16 novice) drove with SAE-level-2 automation. In manual driving, there were no differences between novice and experienced drivers’ rate of manual interactions with the secondary task (i.e., taps on the display). However, with automation, novice drivers had a higher manual interaction rate with the task than experienced drivers. Further, experienced drivers had shorter average glance durations toward the task than novice drivers in general, but the difference was larger with automation compared with manual driving. It appears that with automation, experienced drivers are more conservative in their secondary-task engagement behaviors compared with novice drivers.


Sign in / Sign up

Export Citation Format

Share Document