Flow field and vortex interactions in the near wake of two counter-rotating propellers

2021 ◽  
Vol 117 ◽  
pp. 102918
Author(s):  
Francisco Alves Pereira ◽  
Alessandro Capone ◽  
Fabio Di Felice
2013 ◽  
Vol 730 ◽  
pp. 145-161 ◽  
Author(s):  
Qiqi Wang ◽  
Jun-Hui Gao

AbstractThis paper analyses the adjoint solution of the Navier–Stokes equation. We focus on flow across a circular cylinder at three Reynolds numbers, ${\mathit{Re}}_{D} = 20, 100$ and $500$. The quantity of interest in the adjoint formulation is the drag on the cylinder. We use classical fluid mechanics approaches to analyse the adjoint solution, which is a vector field similar to a flow field. Production and dissipation of kinetic energy of the adjoint field is discussed. We also derive the evolution of circulation of the adjoint field along a closed material contour. These analytical results are used to explain three numerical solutions of the adjoint equations presented in this paper. The adjoint solution at ${\mathit{Re}}_{D} = 20$, a viscous steady state flow, exhibits a downstream suction and an upstream jet, the opposite of the expected behaviour of a flow field. The adjoint solution at ${\mathit{Re}}_{D} = 100$, a periodic two-dimensional unsteady flow, exhibits periodic, bean-shaped circulation in the near-wake region. The adjoint solution at ${\mathit{Re}}_{D} = 500$, a turbulent three-dimensional unsteady flow, has complex dynamics created by the shear layer in the near wake. The magnitude of the adjoint solution increases exponentially at the rate of the first Lyapunov exponent. These numerical results correlate well with the theoretical analysis presented in this paper.


Author(s):  
Pengyin Liu ◽  
Jinge Chen ◽  
Shen Xin ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

In this paper, a slotted tip structure is experimentally analyzed. A wind turbine with three blades, of which the radius is 301.74mm, is investigated by the PIV method. Each wind turbine blade is formed with a slots system comprising four internal tube members embedded in the blade. The inlets of the internal tube member are located at the leading edge of the blade and form an inlet array. The outlets are located at the blade tip face and form an outlet array. The near wake flow field of the wind turbine with slotted tip and without slotted tip are both measured. Velocity field of near wake region and clear images of the tip vortex are captured under different wake ages. The experimental results show that the radius of the tip vortex core is enlarged by the slotted tip at any wake age compared with that of original wind turbine. Moreover, the diffusion process of the tip vortex is accelerated by the slotted tip which lead to the disappearance of the tip vortex occurs at smaller wake age. The strength of the tip vortex is also reduced indicating that the flow field in the near wake of wind turbine is improved. The experimental data are further analyzed with the vortex core model to reveal the flow mechanism of this kind of flow control method. The turbulence coefficient of the vortex core model for wind turbine is obtained from the experimental data of the wind turbine with and without slotted tip. It shows that the slotted tip increases the turbulence strength in the tip vortex core by importing airflow into the tip vortex core during its initial generation stage, which leads to the reduction of the tip vortex strength. Therefore, it is promising that the slotted tip can be used to weaken the vorticity and accelerate the diffusion of the tip vortex which would improve the problem caused by the tip vortex.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 84 ◽  
Author(s):  
Ayşe Yüksel Ozan ◽  
Didem Yılmazer

Urban stormwater is an important environmental problem, especially for metropolitans worldwide. The most important issue behind this problem is the need to find green infrastructure solutions, which provide water treatment and retention. Floating treatment wetlands, which are porous patches that continue down from the free-surface with a gap between the patch and bed, are innovative instruments for nutrient management in lakes, ponds, and slow-flowing waters. Suspended cylindrical vegetation patches in open channels affect the flow dramatically, which causes a deviation from the logarithmic law. This study considered the velocity measurements along the flow depth, at the axis of the patch, and at the near-wake region of the canopy, for different submerged ratios with different patch porosities. The results of this experimental study provide a comprehensive picture of the effects of different submergence ratios and different porosities on the flow field at the near-wake region of the suspended vegetation patch. The flow field was described with velocity and turbulence distributions along the axis of the patch, both upstream and downstream of the vegetation patch. Mainly, it was found that suspended porous canopy patches with a certain range of densities (SVF20 and SVF36 corresponded to a high density of patches in this study) have considerable impacts on the flow structure, and to a lesser extent, individual patch elements also have a crucial role.


1996 ◽  
Author(s):  
Thomas Horvath ◽  
Catherine McGinley ◽  
Klaus Hannemann
Keyword(s):  

Author(s):  
Giacomo Rossitto ◽  
Christophe Sicot ◽  
Valérie Ferrand ◽  
Jacques Borée ◽  
Fabien Harambat

Experimental and numerical analyzes were performed to investigate the aerodynamic performances of a realistic vehicle with a different afterbody rounding. This afterbody rounding resulted in a reduction to drag and lift at a yaw angle of zero, while the crosswind performances were degraded. Rounding the side pillars generated moderate changes to the drag and also caused important lift reductions. A minor effect on the drag force was found to result from the opposite drag effects on the slanted and vertical surfaces. The vorticity distribution in the near wake was also analyzed to understand the flow field modifications due to the afterbody rounding. Crosswind sensitivity was investigated to complete the analysis of the aerodynamic performances of the rounded edges models. Additional tests were conducted with geometry modifications as spoilers and underbody diffusers.


Author(s):  
Kajsa Warfvinge ◽  
L. Christoffer Johansson ◽  
Anders Hedenström

Hovering insects are divided into two categories: “normal” hoverers that moves the wing symmetrically in a horizontal stroke plane, and those with an inclined stroke plane. Normal hoverers have been suggested to support their weight during both down- and upstroke, shedding vortex rings each half stroke. Insects with an inclined stroke plane should, according to theory, produce flight forces only during downstroke, and only generate one set of vortices. The type of hovering is thus linked to the power required to hover. Previous efforts to characterize the wake of hovering insects have used low-resolution experimental techniques or simulated the flow using CFD, and so it remains to be determined if insect wakes can be represented by any of the suggested models. Here, we used tomographic PIV, with a horizontal measurement volume placed below the animals, to show that the wake shed by hovering hawkmoths are best be described as a series of bilateral, stacked vortex “rings”. While the upstroke is aerodynamically active, despite an inclined stroke plane, it produces weaker vortices than the downstroke. In addition, compared to the near wake, the far wake lacks structure and is less concentrated. Both near and far wakes are clearly affected by vortex interactions, suggesting caution is required when interpreting wake topologies. We also estimated induced power (Pind) from downwash velocities in the wake. Standard models predicted a Pind more than double that from our wake measurements. Our results thus question some model assumptions and we propose a reevaluation of the model parameters.


1997 ◽  
Author(s):  
Thomas Horvath ◽  
Klaus Hannemann ◽  
Thomas Horvath ◽  
Klaus Hannemann
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document