High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

2018 ◽  
Vol 427 ◽  
pp. 1046-1054 ◽  
Author(s):  
Longhui Zheng ◽  
Li Yuan ◽  
Qingbao Guan ◽  
Guozheng Liang ◽  
Aijuan Gu
2019 ◽  
Vol 3 (4) ◽  
pp. 726-736 ◽  
Author(s):  
Longhui Zheng ◽  
Li Yuan ◽  
Guozheng Liang ◽  
Aijuan Gu

High-k composites with temperature-stable dielectric properties and low dielectric loss obtained through building a network with in situ-doped barium titanate foam.


2013 ◽  
Vol 117 (30) ◽  
pp. 15487-15495 ◽  
Author(s):  
Binghao Wang ◽  
Dake Qin ◽  
Guozheng Liang ◽  
Aijuan Gu ◽  
Limei Liu ◽  
...  

2014 ◽  
Vol 602-603 ◽  
pp. 700-704
Author(s):  
Min Jia Wang ◽  
Qi Long Zhang ◽  
Xin Hui Zhao ◽  
Hui Yang

Multilayer ceramic capacitors (MLCC) are important functional components of electronic information technology. The development of AC MLCC requires low dielectric loss and high AC breakdown voltage. In this paper, Y-Al-Ga-Si co-doped barium titanate ceramics were prepared by conventional solid state method. Microstructures, surface morphology and dielectric properties were investigated by X-ray diffraction, SEM, and LCR analyzer, respectively. Y3+ entered into the lattice of BaTiO3, replaced A-sites and B-sites, suppressed grain growth effectively, and made crystal structure change from tetragonal to pseudo-cubic, which reduced dielectric loss and lowered the Curie peak. The sintering characteristic and permittivity can be improved by the incorporation of Al and Ga. BaTiO3 -0.06Y2O3 - 0.02Ga2O3 -0.01Al2O3 -0.01SiO2 ceramics sintered at 1380°C achieved good dielectric properties: εr= ~2223, tanδ =~1.1% (at 1kHz), ΔC/C25 <~15.26% (from 55°C to 150°C).


2018 ◽  
Vol 2018 (1) ◽  
pp. 000476-000482 ◽  
Author(s):  
Masao Tomikawa ◽  
Hitoshi Araki ◽  
Yohei Kiuchi ◽  
Akira Shimada

Abstract Progress of 5G telecommunication and mm radar for autopilot, high frequency operation is required. Insulator materials having low loss at high frequency is desired for the applications. We designed the low dielectric constant, and low dielectric loss materials examined molecular structure of the polyimide and found that permittivity 2.6 at 20GHz, dielectric loss 0.002. Furthermore, in consideration of mechanical properties such as the toughness and adhesion to copper from a point of practical use. Dielectric properties largely turned worse when giving photosensitivity. To overcome the poor dielectric properties, we designed the photosensitive system. After all, we successfully obtained 3.5 of dielectric constant and 0.004 of dielectric loss, and 100% of elongation at break. In addition, we offered a B stage sheet as well as varnish. These materials are applicable to re-distribution layer of FO-WLP, Interposer and other RF applications for microelectronics.


2016 ◽  
Vol 18 (35) ◽  
pp. 24270-24277 ◽  
Author(s):  
Mei-Yan Tse ◽  
Xianhua Wei ◽  
Jianhua Hao

Our work shows contributions to the high-performance dielectric properties, including a CP of up to 104–105 and a low dielectric loss down to 0.03 in (Er0.5Nb0.5)xTi1−xO2 materials with secondary phases.


2019 ◽  
Vol 7 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Biao Zhao ◽  
Mahdi Hamidinejad ◽  
Chongxiang Zhao ◽  
Ruosong Li ◽  
Sai Wang ◽  
...  

A microcellular structure can effectively tune the dielectric properties of PVDF/carbon composite foams.


2013 ◽  
Vol 03 (04) ◽  
pp. 1350028 ◽  
Author(s):  
P. Thomas ◽  
K. B. R. Varma

CaCu 3 Ti 4 O 12 (CCTO) ceramics which has perovskite structure gained considerable attention due to its giant permittivity. But it has high tan δ (0.1 at 1 kHz) at room temperature, which needs to be minimized to the level of practical applications. Hence, TeO 2 which is a good glass former has been deliberately added to CCTO nanoceramic (derived from the oxalate precursor route) to explore the possibility of reducing the dielectric loss while maintaining the high permittivity. The structural, morphological and dielectric properties of the pure CCTO and TeO 2 added ceramics were studied using X-ray diffraction, Scanning Electron Microscope along with Energy Dispersive X-ray Analysis (EDX), spectroscopy and Impedance analyzer. For the 2.0 wt.% TeO 2 added ceramics, there is a remarkable difference in the microstructural features as compared to that of pure CCTO ceramics. This sample exhibited permittivity values as high as 7387 at 10 KHz and low dielectric loss value of 0.037 at 10 kHz, which can be exploited for the high frequency capacitors application.


Sign in / Sign up

Export Citation Format

Share Document