Carotenoid profiling of Mytilus coruscus with unialgal cultures: Insights into biosynthetic pathways in tissues

Aquaculture ◽  
2022 ◽  
Vol 547 ◽  
pp. 737472
Author(s):  
Shuang Li ◽  
Keyi Fang ◽  
Shubing Chen ◽  
Jilin Xu ◽  
Haimin Chen ◽  
...  
Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
J Li ◽  
X Tang ◽  
JJ Zhang ◽  
EC O'Neill ◽  
SM Mantovani ◽  
...  

2010 ◽  
Vol 29 (7) ◽  
pp. 786-789
Author(s):  
Wen-li ZHOU ◽  
Ting-ting ZHOU ◽  
Jian-peng ZHANG ◽  
Wei-hua FENG ◽  
Bing-hua JIAO
Keyword(s):  

2020 ◽  
Vol 17 (8) ◽  
pp. 594-609
Author(s):  
Preetismita Borah ◽  
Vhatkar Dattatraya Shivling ◽  
Bimal Krishna Banik ◽  
Biswa Mohan Sahoo

In recent years, hybrid systems are gaining considerable attention owing to their various biological applications in drug development. Generally, hybrid molecules are constructed from different molecular entities to generate a new functional molecule with improved biological activities. There already exist a large number of naturally occurring hybrid molecules based on both non-steroid and steroid frameworks synthesized by nature through mixed biosynthetic pathways such as, a) integration of the different biosynthetic pathways or b) Carbon- Carbon bond formation between different components derived through different biosynthetic pathways. Multicomponent reactions are a great way to generate efficient libraries of hybrid compounds with high diversity. Throughout the scientific history, the most common factors developing technologies are less energy consumption and avoiding the use of hazardous reagents. In this case, microwave energy plays a vital role in chemical transformations since it involves two very essential criteria of synthesis, minimizing energy consumption required for heating and time required for the reaction. This review summarizes the use of microwave energy in the synthesis of steroidal and non-steroidal hybrid molecules and the use of multicomponent reactions.


2020 ◽  
pp. 111869
Author(s):  
Fahim Ullah Khan ◽  
Hui Chen ◽  
Huaxin Gu ◽  
Ting Wang ◽  
Sam Dupont ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 392
Author(s):  
Haomiao Cheng ◽  
Chris Bowler ◽  
Xiaohui Xing ◽  
Vincent Bulone ◽  
Zhanru Shao ◽  
...  

β-Chitin produced by diatoms is expected to have significant economic and ecological value due to its structure, which consists of parallel chains of chitin, its properties and the high abundance of diatoms. Nevertheless, few studies have functionally characterised chitin-related genes in diatoms owing to the lack of omics-based information. In this study, we first compared the chitin content of three representative Thalassiosira species. Cell wall glycosidic linkage analysis and chitin/chitosan staining assays showed that Thalassiosira weissflogii was an appropriate candidate chitin producer. A full-length (FL) transcriptome of T. weissflogii was obtained via PacBio sequencing. In total, the FL transcriptome comprised 23,362 annotated unigenes, 710 long non-coding RNAs (lncRNAs), 363 transcription factors (TFs), 3113 alternative splicing (AS) events and 3295 simple sequence repeats (SSRs). More specifically, 234 genes related to chitin metabolism were identified and the complete biosynthetic pathways of chitin and chitosan were explored. The information presented here will facilitate T. weissflogii molecular research and the exploitation of β-chitin-derived high-value enzymes and products.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 957
Author(s):  
Mamona Nazir ◽  
Muhammad Saleem ◽  
Muhammad Imran Tousif ◽  
Muhammad Aijaz Anwar ◽  
Frank Surup ◽  
...  

Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 425
Author(s):  
Yunyu Tang ◽  
Haiyan Zhang ◽  
Yu Wang ◽  
Chengqi Fan ◽  
Xiaosheng Shen

This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg−1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.


Sign in / Sign up

Export Citation Format

Share Document