An Overview on Steroids and Microwave Energy in Multi-Component Reactions towards the Synthesis of Novel Hybrid Molecules

2020 ◽  
Vol 17 (8) ◽  
pp. 594-609
Author(s):  
Preetismita Borah ◽  
Vhatkar Dattatraya Shivling ◽  
Bimal Krishna Banik ◽  
Biswa Mohan Sahoo

In recent years, hybrid systems are gaining considerable attention owing to their various biological applications in drug development. Generally, hybrid molecules are constructed from different molecular entities to generate a new functional molecule with improved biological activities. There already exist a large number of naturally occurring hybrid molecules based on both non-steroid and steroid frameworks synthesized by nature through mixed biosynthetic pathways such as, a) integration of the different biosynthetic pathways or b) Carbon- Carbon bond formation between different components derived through different biosynthetic pathways. Multicomponent reactions are a great way to generate efficient libraries of hybrid compounds with high diversity. Throughout the scientific history, the most common factors developing technologies are less energy consumption and avoiding the use of hazardous reagents. In this case, microwave energy plays a vital role in chemical transformations since it involves two very essential criteria of synthesis, minimizing energy consumption required for heating and time required for the reaction. This review summarizes the use of microwave energy in the synthesis of steroidal and non-steroidal hybrid molecules and the use of multicomponent reactions.

2020 ◽  
Vol 24 (14) ◽  
pp. 1610-1642 ◽  
Author(s):  
Ahmed El-Mekabaty ◽  
Hassan A. Etman ◽  
Ahmed Mosbah ◽  
Ahmed A. Fadda

Barbituric, thiobarbituric acids and their related analogs are reactive synthons for the synthesis of drugs and biologically, and pharmaceutically active pyrimidines. The present review aimed to summarize the recent advances in the synthesis of different alkylsubstituted, fused cycles, spiro-, and binary heterocycles incorporated pyrimidine skeleton based on barbituric derivatives. In this sequence, the eco-friendly techniques under catalytic conditions were used for the diverse types of multicomponent reactions under different conditions for the synthesis of various types of heterocycles. Nano-catalysts are efficient for the synthesis of these compounds in high yields and effective catalyst reusability. The compounds are potent antibacterial, cytotoxic, xanthine oxidase inhibitory activities, and attend as urease inhibitors. The projected mechanisms for the synthesis of pyranopyrimidines, benzochromenopyrimidines, chromeno-pyranopyrimidines, spiroxyindoles, oxospiro-tricyclic furopyrimidines, pyrimidine-based monoand bicyclic pyridines were discussed. The potent and diverse biological activities for instance, antioxidant, antibacterial, cytotoxic, and xanthine oxidase inhibitory activities, as well as urease inhibitors, are specified.


2019 ◽  
Vol 16 (6) ◽  
pp. 568-577 ◽  
Author(s):  
Jainara Santos do Nascimento ◽  
João Carlos Silva Conceição ◽  
Eliane de Oliveira Silva

Coumarins are natural 1,2-benzopyrones, present in remarkable amounts as secondary metabolites in edible and medicinal plants. The low yield in the coumarins isolation from natural sources, along with the difficulties faced by the total synthesis, make them attractive for biotechnological studies. The current literature contains several reports on the biotransformation of coumarins by fungi, which can generate chemical analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological interest in the coumarin-related compounds, their alimentary and chemical applications, this review covers the biotransformation of coumarins by filamentous fungi. The chemical structures of the analogs were presented and compared with those from the pattern structures. The main chemical reactions catalyzed the insertion of functional groups, and the impact on the biological activities caused by the chemical transformations were discussed. Several chemical reactions can be catalyzed by filamentous fungi in the coumarin scores, mainly lactone ring opening, C3-C4 reduction and hydroxylation. Chunninghamella sp. and Aspergillus sp. are the most common fungi used in these transformations. Concerning the substrates, the biotransformation of pyranocoumarins is a rarer process. Sometimes, the bioactivities were improved by the chemical modifications and coincidences with the mammalian metabolism were pointed out.


2020 ◽  
Vol 16 (3) ◽  
pp. 272-306
Author(s):  
Ioannis Fotopoulos ◽  
Dimitra Hadjipavlou-Litina

Background: Coumarins exhibit a plethora of biological activities, e.g. antiinflammatory and anti-tumor. Molecular hybridization technique has been implemented in the design of novel coumarin hybrids with several bioactive groups in order to obtain molecules with better pharmacological activity and improved pharmacokinetic profile. Objective: Therefore, we tried to gather as many as possible biologically active coumarin hybrids referred in the literature till now, to delineate the structural characteristics in relation to the activities and to have a survey that might help the medicinal chemists to design new coumarin hybrids with drug-likeness and varied bioactivities. Results: The biological activities of the hybrids in most of the cases were found to be different from the biological activities presented by the parent coumarins. The results showed that the hybrid molecules are more potent compared to the standard drugs used in the evaluation experiments. Conclusion: Conjugation of coumarin with varied pharmacophore groups/druglike molecules responsible for different biological activities led to many novel hybrid molecules, with a multitarget behavior and improved pharmacokinetic properties.


2019 ◽  
Vol 05 ◽  
Author(s):  
Atul Sharma ◽  
Devender Pathak

Keeping this fact that study of a body is biology but life is all about chemicals and chemical transformations, many medicinal chemist start research in finding new and novel chemical compounds which having pharmacological activities. Most of those chemical compounds which are having active pharmacological effects are heterocyclic compounds. Heterocyclic compounds clutch a particular place among pharmaceutically active natural and synthetic compounds. The ability to serve both as biomimetics and reactive pharmacophores of heterocyclic nuclei is incredible and it has principally contributed to their unique value as traditional key elements of numerous drugs. These heterocyclic nuclei offer a huge area for new lead molecules for drug discovery and for generation of activity relationships with biological targets to enhance pharmacological effects. For these reasons, it is not surprising that this structural class has received special attention in drug discovery. The hydrogen bond acceptors and donors arranged in a manner of a semi-rigid skeleton in heterocyclic rings and therefore they can present a varied display of significant pharmacophores. Lead identification and optimization of drug target probable can be achieved by generation of chemical diversity produced by derivatization of heterocyclic pharmacophores with different groups or substituents. A tricyclic carbazole nucleus is an integral part of naturally occurring alkaloids and synthetic derivatives, possessing various potential biological activities such as anticancer, antimicrobial and antiviral. Binding mechanism of carbazole with target receptor as a molecule or fused molecule exhibits the potential lethal effect.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Rita Abou Nader ◽  
Rawan Mackieh ◽  
Rim Wehbe ◽  
Dany El El Obeid ◽  
Jean Marc Sabatier ◽  
...  

Honeybees are one of the most marvelous and economically beneficial insects. As pollinators, they play a vital role in every aspect of the ecosystem. Beehive products have been used for thousands of years in many cultures for the treatment of various diseases. Their healing properties have been documented in many religious texts like the Noble Quran and the Holy Bible. Honey, bee venom, propolis, pollen and royal jelly all demonstrated a richness in their bioactive compounds which make them effective against a variety of bacterial strains. Furthermore, many studies showed that honey and bee venom work as powerful antibacterial agents against a wide range of bacteria including life-threatening bacteria. Several reports documented the biological activities of honeybee products but none of them emphasized on the antibacterial activity of all beehive products. Therefore, this review aims to highlight the antibacterial activity of honey, bee venom, propolis, pollen and royal jelly, that are produced by honeybees.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


2017 ◽  
Vol 62 (3) ◽  
pp. 1443-1447 ◽  
Author(s):  
T. Maciąg ◽  
J. Wieczorek ◽  
B. Węcki

AbstractElectropolishing is electrochemical method used in metal working that has a vital role in production of medical apparatus, in food or electric industry. The purpose of this paper is to determine optimal current parameters and time required for conducting electropolishing process from the perspective of changes of surface microgeometry. Furthermore, effect of different types of mechanical working used before electropolishing on final surface state was evaluated by observation in changes of topography. Research was conducted on electrolytic copper and brass. Analysis of surface geometry and its parameters (Ra, Sa) was used as criterion describing efficiency of chemical electropolishing. Results of the experiment allow for current parameter optimization of electrochemical polishing process for selected non-ferrous alloys with preliminary mechanical preparation of the surface.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 610
Author(s):  
Junjie Yan ◽  
Weiwei Liu ◽  
Jiatong Cai ◽  
Yiming Wang ◽  
Dahong Li ◽  
...  

Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.


2021 ◽  
Vol 12 (1) ◽  
pp. 315-333
Author(s):  
Manjula M ◽  
Sankar D S

Acanthaceae is popularly known as acanthus family which belong to mint order – lamiales. They are distributed from tropics to a temperate region such as India, Malaysia, Brunei, Indonesia, Brazil, Central America and Africa. Most members of this family are therapeutically important since they are in the up to date usage by ethnic communities. Andrographis paniculata, Clinacanthus nutans, Graptophyllum pictum, Hemigraphis alternata, Justicia gendarussa and Strobilanthes Crispus are some of the medicinal plants of Acanthaceae family. These plants are recognized for their biopharmaceutical potential usage in traditional medicine. These plants have a plethora of phytochemical compounds such as flavonoids, phenolic compounds, glycosides, terpenoids, benzenoids, quinine, triterpenoids and naphthoquinone present in various parts of the plant that plays a vital role in drug industries. The pharmacological properties of these plants such as anti-bacterial, anti-diabetic, anti-cancer, anti-oxidant, anti-inflammatory, anti-arthritis, hepatoprotective, anti-viral and anti-hypertensive are in general practice as an alternative and complementary medicine in both ethnobotanical and pharmacological fields. This article encompasses not only the comprehensive survey based on the electronic resources, scientific journals but also the books that summarize the botanical, phytochemical properties of these plants and also accentuate their significant role in both ethnobotanical and pharmacological fields. It is felt that this article would provide more insight into the health benefits of some plants of the Acanthaceae family.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 355 ◽  
Author(s):  
Joana L. C. Sousa ◽  
Carmen S. R. Freire ◽  
Armando J. D. Silvestre ◽  
Artur M. S. Silva

Betulinic acid (BA) and its natural analogues betulin (BN), betulonic (BoA), and 23-hydroxybetulinic (HBA) acids are lupane-type pentacyclic triterpenoids. They are present in many plants and display important biological activities. This review focuses on the chemical transformations used to functionalize BA/BN/BoA/HBA in order to obtain new derivatives with improved biological activity, covering the period since 2013 to 2018. It is divided by the main chemical transformations reported in the literature, including amination, esterification, alkylation, sulfonation, copper(I)-catalyzed alkyne-azide cycloaddition, palladium-catalyzed cross-coupling, hydroxylation, and aldol condensation reactions. In addition, the synthesis of heterocycle-fused BA/HBA derivatives and polymer‒BA conjugates are also addressed. The new derivatives are mainly used as antitumor agents, but there are other biological applications such as antimalarial activity, drug delivery, bioimaging, among others.


Sign in / Sign up

Export Citation Format

Share Document