scholarly journals The effect of silver diamine fluoride in preventing in vitro primary coronal caries under pH-cycling conditions

2021 ◽  
Vol 121 ◽  
pp. 104950
Author(s):  
Parand Sorkhdini ◽  
Yasmi O. Crystal ◽  
Qing Tang ◽  
Frank Lippert
2018 ◽  
Vol 52 (3) ◽  
pp. 199-211 ◽  
Author(s):  
Richard J. Wierichs ◽  
Sabrina Stausberg ◽  
Julian Lausch ◽  
Hendrik Meyer-Lueckel ◽  
Marcella Esteves-Oliveira

The aim of this study was to compare the caries-preventive effect of different fluoride varnishes on sound dentin as well as on artificial dentin caries-like lesions. Bovine dentin specimens (n = 220) with one sound surface (ST) and one artificial caries lesion (DT) were prepared and randomly allocated to 11 groups. The interventions before pH cycling were as follows: application of a varnish containing NaF (22,600 ppm F-; Duraphat [NaF0/NaF1]), NaF plus tricalcium phosphate (22,600 ppm F-; Clinpro White Varnish Mint [TCP0/TCP1]), NaF plus casein phosphopeptide-stabilized amorphous calcium phosphate complexes (CPP-ACP; 22,600 ppm F-; MI Varnish [CPP0/CPP1]), or silver diamine fluoride (SDF; 35,400 ppm F-; Cariestop 30% [SDF0/SDF1]) and no intervention (NNB/N0/N1). During pH cycling (14 days, 6 × 120 min demineralization/day) half of the specimens in each group were brushed (10 s; 2 times/day) with either fluoride-free (“0”; e.g., TCP0) or 1,100 ppm F- (“1”; e.g., TCP1) dentifrice slurry. In another subgroup, the specimens were pH cycled but not brushed (NNB). Differences in integrated mineral loss (ΔΔZ), lesion depth (ΔLD), and colorimetric values (ΔΔE) were calculated between the values after initial demineralization and those after pH cycling, using transversal microradiography and photographic images. After pH cycling, no discoloration could be observed. Furthermore, NNB, N0, and N1 showed significantly increased ΔZDT/LDDT and ΔZST/LDST values, indicating further demineralization. In contrast, CPP0, CPP1, SDF0, and SDF1 showed significantly decreased ΔZDT/LDDT values, indicating remineralization (p ≤ 0.004; paired t test). CPP0, CPP1, SDF0, and SDF1 showed significantly higher changes in ΔΔZDT/ΔLDDT and ΔΔZST/ΔLDST than NNB, N0, and N1 (p < 0.001; Bonferroni post hoc test). In conclusion, under the conditions chosen, all fluoride varnishes prevented further demineralization. However, only NaF plus CPP-ACP and SDF could remineralize artificial dentin caries-like lesions under net-demineralizing conditions, thereby indicating that NaF plus CPP-ACP and SDF may be helpful to high-caries-risk patients.


2018 ◽  
Vol 69 ◽  
pp. 55-59 ◽  
Author(s):  
Kulnipa Punyanirun ◽  
Thanida Yospiboonwong ◽  
Thansinee Kunapinun ◽  
Panida Thanyasrisung ◽  
Chutima Trairatvorakul

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz Martines de Souza ◽  
Mayara Souza Silva ◽  
Aline Silva Braga ◽  
Patrícia Sanches Kerges Bueno ◽  
Paulo Sergio da Silva Santos ◽  
...  

AbstractThis in vitro study evaluated the protective effect of titanium tetrafluoride (TiF4) varnish and silver diamine fluoride (SDF) solution on the radiation-induced dentin caries. Bovine root dentin samples were irradiated (70 Gy) and treated as follows: (6 h): 4% TiF4 varnish; 5.42% NaF varnish; 30% SDF solution; placebo varnish; or untreated (negative control). Microcosm biofilm was produced from human dental biofilm (from patients with head-neck cancer) mixed with McBain saliva for the first 8 h. After 16 h and from day 2 to day 5, McBain saliva (0.2% sucrose) was replaced daily (37 °C, 5% CO2) (biological triplicate). Demineralization was quantified by transverse microradiography (TMR), while biofilm was analyzed by using viability, colony-forming units (CFU) counting and lactic acid production assays. The data were statistically analyzed by ANOVA (p < 0.05). TiF4 and SDF were able to reduce mineral loss compared to placebo and the negative control. TiF4 and SDF significantly reduced the biofilm viability compared to negative control. TiF4 significantly reduced the CFU count of total microorganism, while only SDF affected total streptococci and mutans streptococci counts. The varnishes induced a reduction in lactic acid production compared to the negative control. TiF4 and SDF may be good alternatives to control the development of radiation-induced dentin caries.


2021 ◽  
Vol 46 (1) ◽  
pp. E11-E20
Author(s):  
IF Leão ◽  
N Araújo ◽  
CK Scotti ◽  
RFL Mondelli ◽  
MM de Amoêdo Campos Velo ◽  
...  

Clinical Relevance A prereacted, glass-ionomer filler fluoride-containing resin composite had lower remineralization potential than glass-ionomer cements but was able to inhibit enamel demineralization; thus, it may be an option for restoring dental surfaces for patients at high risk of caries. SUMMARY Evidence is lacking on the use of surface prereacted glass-ionomer filler resin composites to inhibit demineralization and that simulate real clinical conditions. The present laboratory study evaluated the potential of such composites to prevent demineralization and quantified fluoride (F) and other ions released from restorative materials after a dynamic pH-cycling regimen applied to the tooth material interface in vitro. The pH-cycling regimen was assessed by measuring surface hardness (SH) along with energy dispersive X-ray spectroscopy (EDX). Methods and Materials: Ninety blocks of bovine enamel were subjected to composition analysis with EDX, and were further categorized based on SH. The blocks were randomly divided into 6 treatment groups (n=15 each): F IX (Fuji IX Extra; GC Corporation); IZ (Ion Z, FGM); F II (Fuji II LC, GC Corporation); B II (Beautifil II, Shofu); F250 (Filtek Z250 XT, 3M ESPE); and NT (control, no treatment). The blocks were subjected to a dynamic pH-cycling regimen at 37°C for 7 days concurrently with daily alternations of immersion in demineralizing/remineralizing solutions. EDX was conducted and a final SH was determined at standard distances from the restorative materials (150, 300, and 400 μm). Results: The EDX findings revealed a significant increase in F concentration and a decrease in Ca2+ in the enamel blocks of group B II after the pH-cycling regimen (p&lt;0.05). SH values for groups F IX, IZ, and F II were greater than those for groups B II, F250, and NT at all distances from the materials. Conclusions: The results suggest that each of 3 restorative materials, F IX, IZ, and F II, partially inhibited enamel demineralization under a dynamic pH-cycling regimen.


2021 ◽  
Author(s):  
Lethycia Almeida Santos ◽  
Tatiana Martini ◽  
João Victor Frazão Câmara ◽  
Fabiana Navas Reis ◽  
Adriana de Cássia Ortiz ◽  
...  

The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into two groups (n=135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/ml CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2 h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90s, artificial saliva/2h, artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey´s test (p <0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/ml gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.


2018 ◽  
Vol 7 (6) ◽  
pp. 509-520 ◽  
Author(s):  
Amitis Vieira Costa e Silva ◽  
Joás Araújo Teixeira ◽  
Cláudia C.B.O. Mota ◽  
Emery Clayton Cabral Correia Lins ◽  
Paulo Correia de Melo Júnior ◽  
...  

AbstractBackgroundNanosilver fluoride (NSF) was developed as an alternative in the prevention of dental caries.PurposeThe aim of this study was to test the remineralizing action of NSF on incipient enamel caries and its antimicrobial action on the acid production and adhesion of Streptococcus mutans.MethodsDeciduous enamel fragments were treated with sodium fluoride (NaF), NSF and deionized water. Microhardness, fluorescence spectroscopy and optical coherence tomography imaging were performed on each specimen before chemical caries induction, after caries induction and after 14 days of pH cycling. The treated enamel fragments were also placed into test tubes containing bacterial suspension and saliva. The pH readings and quantification of the adhered microorganisms to the dental enamel were determined. Analysis of variance, Kruskal-Wallis, Mann-Whitney, Tukey and mixed linear regression model were applied.ResultsNSF and NaF were effective in enamel remineralization, with a statistically significant difference (p<0.001) to deionized water, and they had no statistically significant difference between themselves (p>0.005). NSF had greater effectiveness compared to NaF in preventing decreases of pH and adhesion of S. mutans to the enamel surface, with statistically significant (p<0.001) differences.ConclusionNSF may be more effective than conventional fluorides in treating incipient caries lesions due to its remineralization and antibacterial actions.


2020 ◽  
Vol 31 (3) ◽  
pp. 257-263
Author(s):  
Aline Laignier Soares-Yoshikawa ◽  
Jaime Aparecido Cury ◽  
Cínthia Pereira Machado Tabchoury

Abstract The aim of this in vitro study was to determine the fluoride concentration in silver diamine fluoride (SDF) products and their bioavailability with demineralized dentine. The products evaluated (expected fluoride concentrations) were: I: Saforide 38% (45,283 ppm F); II: Advantage Arrest 38.3 to 43.2% (45,283 to 51,013 ppm F); III: Ancárie 12% (14,100 ppm F); IV: Ancárie 30% (35,400 ppm F), V: Cariestop 12% (14,100 ppm F) and VI: Cariestop 30% (35,400 ppm F). The fluoride concentration was evaluated using an ion-specific electrode (ISE) by direct technique, which was confirmed after microdiffusion. The pH of the products was determined with a pH test strip. For the bioavailability test, demineralized dentine slabs were treated with one of the products for 1 min. Loosely (CaF2-like) and firmly-bound fluoride (FAp) were determined. The fluoride concentration found in the products (mean±SD; ppm F) by the ISE direct technique was: I:53,491±554; II:57,249±1,851; III:4,814±268; IV:5,726±43; V:10,145±468; VI:11,858±575; these values were confirmed after microdiffusion (t-test; p>0.05) and disagree with the declared by the manufacturers. The pH of Ancárie 12 and 30% was 6.0 and 4.5, respectively, in disagreement with the alkaline pH expected for SDF solution and found in the other products evaluated. There was no correlation between either CaF2-like (r=0.221; p=0.337) or FAp (r=-0.144; p=0.830) formed in demineralized dentine and fluoride concentration found in the products. The problems of pH and fluoride concentration found in available professional commercial SDF products suggest that they are not under sanitary surveillance.


2018 ◽  
Vol 28 (5) ◽  
pp. 514-522 ◽  
Author(s):  
Jilen Patel ◽  
Robert P. Anthonappa ◽  
Nigel. M. King

2020 ◽  
pp. 1-14
Author(s):  
Daniel Erdwey ◽  
Hendrik Meyer-Lueckel ◽  
Marcella Esteves-Oliveira ◽  
Christian Apel ◽  
Richard Johannes Wierichs

<b><i>Objectives:</i></b> The aim of this in vitro study was to compare the demineralization inhibitory effect of gels/solutions used in combination with either standard or highly fluoridated dentifrices on sound dentin as well as on artificial dentin caries-like lesions. <b><i>Methods:</i></b> Bovine dentin specimens (<i>n</i> = 240) with two different surfaces each (sound [ST] and artificial caries lesion [DT]) were prepared and randomly allocated to twelve groups. Weekly interventions during pH-cycling (28 days, 6 × 120 min demineralization/day) were: the application of gels/solutions containing amine fluoride/sodium fluoride (12,500 ppm F [ppm]; pH = 4.4; AmF); NaF (12,500 ppm; pH = 6.6; NaF1); NaF (12,500 ppm; pH = 6.3; NaF2); silver diamine fluoride (14,200 ppm; pH = 8.7; SDF); acidulated phosphate fluoride (12,500 ppm; pH = 3.8; APF), and no intervention (standard control; S). Furthermore, half of the specimens in each group were brushed (10 s; twice per day) with dentifrice slurries containing either 1,450 ppm (e.g., AmF<sub>1450</sub>) or 5,000 ppm (e.g., AmF<sub>5000</sub>). Differences in integrated mineral loss (ΔΔZ) and lesion depth (ΔLD) were calculated between values before and after pH-cycling using transversal microradiography. <b><i>Results:</i></b> After pH-cycling Ss showed significantly increased ΔZ<sub>DT</sub> and LD<sub>DT</sub> values, indicating further demineralization. In contrast, except for one, all groups including fluoride gels/solutions showed significantly decreased ΔZ<sub>DT</sub> values. Additional use of most fluoride gels/solutions significantly enhanced mineral gain, mainly in the surface area; however, acidic gels/solutions seemed to have negative effects on lesion depths. <b><i>Significance:</i></b> Under the present pH-cycling conditions the highly fluoridated dentifrice significantly reduced caries progression and additional application of nearly all of the fluoride gels/solutions resulted in remineralization. However, there was no difference in the remineralizing capacity of fluoride gels/solutions when used in combination with either standard or highly fluoridated dentifrices.


Sign in / Sign up

Export Citation Format

Share Document