Vapor hydrogen peroxide as alternative to dry heat microbial reduction

2008 ◽  
Vol 42 (6) ◽  
pp. 1150-1160 ◽  
Author(s):  
S. Chung ◽  
R. Kern ◽  
R. Koukol ◽  
J. Barengoltz ◽  
H. Cash
2012 ◽  
Vol 78 (12) ◽  
pp. 4169-4174 ◽  
Author(s):  
T. Pottage ◽  
S. Macken ◽  
K. Giri ◽  
J. T. Walker ◽  
A. M. Bennett

ABSTRACTThe currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3exposure chamber. Five spore-formingBacillusspp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery ofBacillus atrophaeusandGeobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce bothB. atrophaeusandG. stearothermophilusby 5 logs. Of the three otherBacillusspp. tested,Bacillus thuringiensisproved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing theBacillusspp. tested within the exposure ranges by over 5 logs, with the exception ofB. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry.


2020 ◽  
pp. 100111
Author(s):  
Constance Wielick ◽  
Louisa F. Ludwig-Begall ◽  
Lorène Dams ◽  
Ravo M. Razafimahefa ◽  
Pierre-Francois Demeuldre ◽  
...  

2020 ◽  
Author(s):  
Constance Wielick ◽  
Louisa Fiona Ludwig-Begall ◽  
Lorene Dams ◽  
Ravo Michele Razafimahefa ◽  
Pierre-Francois Demeuldre ◽  
...  

In the context of the SARS-CoV-2 pandemic, reuse of surgical masks and filtering facepiece respirators has been recommended. Their reuse necessitates procedures to inactivate contaminating human respiratory and oral pathogens. We previously demonstrated decontamination of masks and respirators contaminated with an infectious SARS-CoV-2 surrogate via ultraviolet germicidal irradiation, vaporised hydrogen peroxide, and use of dry heat. Here, we show that these same methods efficiently inactivate a more resistant, non-enveloped oral virus; decontamination of infectious murine norovirus-contaminated masks and respirators reduced viral titres by over four orders of magnitude on mask or respirator coupons.


Author(s):  
Ashok Kumar Jena ◽  
Jitendra Sharan

Abstract Filtering facepiece respirators (FFRs) are made for one-time use. A massive shortage of FFRs is widespread during pandemic events and has forced many healthcare organizations to decontaminate them and re-use for a limited time. Many decontamination methods have been proposed for the decontamination of FFRs. This review highlights various aspects of decontamination methods available in the literature. Among various methods available, vaporized hydrogen peroxide, ultraviolet irradiation, and dry heat seem to be the most promising decontaminants for FFRs. On the other hand, microwave, bleach, ethylene oxide, alcohol, hydrogen peroxide liquid, sanitizing wipes, and soap and water are not recommended methods for FFR decontamination.


2003 ◽  
Vol 39 (4) ◽  
pp. 441-447 ◽  
Author(s):  
P. VELEMPINI ◽  
I. RIDDOCH ◽  
N. BATISANI

The effects of different seed treatment methods and durations of exposure on germination of wild okra (Corchorus olitorius), a traditional leafy vegetable consumed in many parts of Africa, were investigated. Seeds were exposed to seven treatments (hot water at 80 °C, hot water at 100 °C, dry heat at 80 °C, dry heat at 100 °C, concentrated sulphuric acid, 10% hydrogen peroxide and water at room temperature) for periods of up to 30 minutes. Exposure for five to 15 minutes in hot water at 80 °C was the most effective treatment for enhancing germination (>90%), followed by five minutes in hot water at 100 °C (80%) and 30 minutes in sulphuric acid (57%). Other treatments were less effective. Soaking seeds in hot water at approximately 80 °C for about 10 minutes can be recommended, therefore, to farmers as a simple, cheap and very effective way of germinating wild okra.


2005 ◽  
Author(s):  
Michael Kempf ◽  
Larry Kirschner ◽  
Robert A. Beaudet

Author(s):  
M. A. Khan ◽  
A. Ikram ◽  
S. Savul ◽  
F. K. Lalani ◽  
M. A. Khan ◽  
...  

Background. The COVID-19 pandemic has presented an unprecedented strain on healthcare supplies. Currently there is a global shortage of personal protective equipment (PPE), especially N95 masks. In order to safeguard healthcare personnel in this critical time and to mitigate shortages of N95 respirators, reuse of N95 respirators has to be considered. Methods. Using PubMed and Science Direct, a literature search was conducted to find and synthesize relevant literature on decontamination of N95 respirators for their subsequent reuse. Peer-reviewed publications related to methods of decontamination from January 2007 to April 2020 in the English language are included in this narrative review. Bibliographies of articles for relevant literature were also scrutinized. Findings. A total of 19 studies are included in this narrative review. The appraised methods include ultraviolet germicidal irradiation (UVGI), moist heat incubation (MHI), ethylene oxide (EtO), hydrogen peroxide vapor (HPV), microwave steam bags (MSB), microwave-generated steam (MGS), dry microwave oven irradiation, hydrogen peroxide gas plasma (HPGP), dry heat, liquid hydrogen peroxide, and bleach and alcohol. Conclusion. In light of the COVID-19 pandemic, reuse of N95 respirators, although suboptimal, can be considered. Evidence reveals that UVGI, MHI, and HPV are amongst the safest and efficacious methods for decontamination of N95 masks. More research is needed to establish the safety and effectiveness of MGS, MSB, dry heat, EtO, liquid hydrogen peroxide, and HPGP. Alcohol, microwave irradiation, and bleach are not recommended because they damage N95 respirators.


2006 ◽  
Vol 188 (11) ◽  
pp. 3740-3747 ◽  
Author(s):  
Barbara Setlow ◽  
Swaroopa Atluri ◽  
Ryan Kitchel ◽  
Kasia Koziol-Dube ◽  
Peter Setlow

ABSTRACT Dipicolinic acid (DPA) comprises ∼10% of the dry weight of spores of Bacillus species. Although DPA has long been implicated in spore resistance to wet heat and spore stability, definitive evidence on the role of this abundant molecule in spore properties has generally been lacking. Bacillus subtilis strain FB122 (sleB spoVF) produced very stable spores that lacked DPA, and sporulation of this strain with DPA yielded spores with nearly normal DPA levels. DPA-replete and DPA-less FB122 spores had similar levels of the DNA protective α/β-type small acid-soluble spore proteins (SASP), but the DPA-less spores lacked SASP-γ. The DPA-less FB122 spores exhibited similar UV resistance to the DPA-replete spores but had lower resistance to wet heat, dry heat, hydrogen peroxide, and desiccation. Neither wet heat nor hydrogen peroxide killed the DPA-less spores by DNA damage, but desiccation did. The inability to synthesize both DPA and most α/β-type SASP in strain PS3664 (sspA sspB sleB spoVF) resulted in spores that lost viability during sporulation, at least in part due to DNA damage. DPA-less PS3664 spores were more sensitive to wet heat than either DPA-less FB122 spores or DPA-replete PS3664 spores, and the latter also retained viability during sporulation. These and previous results indicate that, in addition to α/β-type SASP, DPA also is extremely important in spore resistance and stability and, further, that DPA has some specific role(s) in protecting spore DNA from damage. Specific roles for DPA in protecting spore DNA against damage may well have been a major driving force for the spore's accumulation of the high levels of this small molecule.


Sign in / Sign up

Export Citation Format

Share Document