Effects of lean and fatty fish and krill oil on gene expression in peripheral blood mononuclear cells and lipoprotein subclasses: A randomized controlled trial

2018 ◽  
Vol 275 ◽  
pp. e73
Author(s):  
A. Rundblad ◽  
K.B. Holven ◽  
I. Bruheim ◽  
M.C. Myhrstad ◽  
S.M. Ulven
2018 ◽  
Vol 7 ◽  
Author(s):  
Amanda Rundblad ◽  
Kirsten B. Holven ◽  
Inge Bruheim ◽  
Mari C. Myhrstad ◽  
Stine M. Ulven

AbstractMarine n-3 (omega-3) fatty acids alter gene expression by regulating the activity of transcription factors. Krill oil is a source of marine n-3 fatty acids that has been shown to modulate gene expression in animal studies; however, the effect in humans is not known. Hence, we aimed to compare the effect of intake of krill oil, lean and fatty fish with a similar content of n-3 fatty acids, and high-oleic sunflower oil (HOSO) with added astaxanthin on the expression of genes involved in glucose and lipid metabolism and inflammation in peripheral blood mononuclear cells (PBMC) as well as circulating inflammatory markers. In an 8-week trial, healthy men and women aged 18–70 years with fasting TAG of 1·3–4·0 mmol/l were randomised to receive krill oil capsules (n 12), HOSO capsules (n 12) or lean and fatty fish (n 12). The weekly intakes of marine n-3 fatty acids from the interventions were 4654, 0 and 4103 mg, respectively. The mRNA expression of four genes, PPAR γ coactivator 1A (PPARGC1A), steaoryl-CoA desaturase (SCD), ATP binding cassette A1 (ABCA1) and cluster of differentiation 40 (CD40), were differently altered by the interventions. Furthermore, within-group analyses revealed that krill oil down-regulated the mRNA expression of thirteen genes, including genes involved in glucose and cholesterol metabolism and β-oxidation. Fish altered the mRNA expression of four genes and HOSO down-regulated sixteen genes, including several inflammation-related genes. There were no differences between the groups in circulating inflammatory markers after the intervention. In conclusion, the intake of krill oil and HOSO with added astaxanthin alter the PBMC mRNA expression of more genes than the intake of fish.


2018 ◽  
Vol 43 (3) ◽  
pp. 233-239 ◽  
Author(s):  
Lisa M. McEwen ◽  
Evan G. Gatev ◽  
Meaghan J. Jones ◽  
Julia L. MacIsaac ◽  
Megan M. McAllister ◽  
...  

Physical activity confers many health benefits, but the underlying mechanisms require further exploration. In this pilot randomized controlled trial we tested the association between longitudinal measures of DNA methylation and changes in objective measures, including physical activity, weight loss, and C-reactive protein levels in community-dwelling women aged 55 to 70 years. We assessed DNA methylation from 20 healthy postmenopausal women, who did not have a mobility disability and allocated them to a group-based intervention, Everyday Activity Supports You, or a control group (monthly group-based health-related education sessions). The original randomized controlled trial was 6 months in duration and consisted of nine 2-h sessions that focused on reducing sedentary behaviour for the intervention group, or six 1-h sessions that focused on other topics for the control group. We collected peripheral blood mononuclear cells, both at baseline and 6 months later. Samples were processed using the Illumina 450k Methylation array to quantify DNA methylation at >485 000 CpG sites in the genome. There were no significant associations between DNA methylation and physical activity, but we did observe alterations at epigenetic modifications that correlated with change in percent body weight over a 6-month period at 12 genomic loci, 2 of which were located near the previously reported weight-associated genes RUNX3 and NAMPT. We also generated a potential epigenetic predictor of weight loss using baseline DNA methylation at 5 CpG sites. These exploratory findings suggest a potential biological link between body weight changes and epigenetic processes.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1773 ◽  
Author(s):  
Michela Alfarano ◽  
Donato Pastore ◽  
Vincenzo Fogliano ◽  
Casper Schalkwijk ◽  
Teresa Oliviero

Studies demonstrate that the potential health-beneficial effect of sulforaphane (SR), a compound formed in broccoli, is the result of a number of mechanisms including upregulation of phase two detoxification enzymes. Recent studies suggest that SR increases expression/activity of glyoxalase 1 (Glo1), an enzyme involved in the degradation of methylglyoxal, is major precursor of advanced glycation end products. Those compounds are associated with diabetes complications and other age-related diseases. In this study, the effect of SR on the expression/activity of Glo1 in peripheral blood mononuclear cells (PBMCs) from 8 healthy volunteers was investigated. PBMCs were isolated and incubated with SR (2.5 μM-concentration achievable by consuming a broccoli portion) for 24 h and 48 h. Glo1 activity/expression, reduced glutathione (GSH), and glutathione-S-transferase gene expression were measured. Glo1 activity was not affected while after 48 h a slight but significant increase of its gene expression (1.03-fold) was observed. GSTP1 expression slightly increased after 24 h incubation (1.08-fold) while the expressions of isoform GSTT2 and GSTM2 were below the limit of detection. GSH sharply decreased, suggesting the formation of GSH-SR adducts that may have an impact SR availability. Those results suggest that a regular exposure to SR by broccoli consumption or SR supplements may enhance Glo1.


Sign in / Sign up

Export Citation Format

Share Document