PCSK9 modulates brain cholesterol metabolism and neuroinflammation in human cell models of astrocytes and neurons

2021 ◽  
Vol 331 ◽  
pp. e4-e5
Author(s):  
F. Zimetti ◽  
N. Ferri ◽  
M.P. Adorni ◽  
B. Papotti ◽  
C. Marchi ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vijay R. Varma ◽  
H. Büşra Lüleci ◽  
Anup M. Oommen ◽  
Sudhir Varma ◽  
Chad T. Blackshear ◽  
...  

AbstractThe role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Caterina Peggion ◽  
Maria Lina Massimino ◽  
Roberto Stella ◽  
Raissa Bortolotto ◽  
Jessica Agostini ◽  
...  

TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.


2010 ◽  
Vol 19 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Tim Vanmierlo ◽  
Vincent W. Bloks ◽  
Leonie C. van Vark-van der Zee ◽  
Kris Rutten ◽  
Anja Kerksiek ◽  
...  

Schizophrenia ◽  
2013 ◽  
pp. 167-181 ◽  
Author(s):  
Ashley M. Wilson ◽  
Akira Sawa
Keyword(s):  

2019 ◽  
Vol 13 (6) ◽  
pp. 795-811 ◽  
Author(s):  
Taylor E. Henson ◽  
Jana Navratilova ◽  
Alan H. Tennant ◽  
Karen D. Bradham ◽  
Kim R. Rogers ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6388
Author(s):  
Melania Lippi ◽  
Ilaria Stadiotti ◽  
Giulio Pompilio ◽  
Elena Sommariva

The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.


Cholesterol ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Matthias Orth ◽  
Stefano Bellosta

Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.


2009 ◽  
Vol 24 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Heike Kölsch ◽  
Dieter Lütjohann ◽  
Frank Jessen ◽  
Julius Popp ◽  
Frank Hentschel ◽  
...  

AbstractBackgroundCholesterol 24S-hydroxylase (CYP46) catalyzes the conversion of cholesterol to 24S-hydroxycholesterol, the primary cerebral cholesterol elimination product. Only few gene variations in CYP46 gene (CYP46A1) have been investigated for their relevance as genetic risk factors of Alzheimer’s disease (AD) and results are contradictory.MethodsWe performed a gene variability screening in CYP46A1 and investigated the effect of gene variants on the risk of AD and on CSF levels of cholesterol and 24S-hydroxycholesterol.ResultsTwo of the identified 16 SNPs in CYP46A1 influenced AD risk in our study (rs7157609: p = 0.016; rs4900442: p = 0.019). The interaction term of both SNPs was also associated with an increased risk of AD (p = 0.006). Haplotypes including both SNPs were calculated and haplotype G–C was identified to influence the risk of AD (p = 0.005). AD patients and non-demented controls, who were carriers of the G–C haplotype, presented with reduced CSF levels of 24S-hydroxycholesterol (p = 0.001) and cholesterol (p < 0.001).ConclusionOur results suggest that CYP46A1 gene variations might act as risk factor for AD via an influence on brain cholesterol metabolism.


Sign in / Sign up

Export Citation Format

Share Document