scholarly journals Comparison of the WRF and HARMONIE models ability for mountain wave warnings

2021 ◽  
pp. 105890
Author(s):  
J. Díaz-Fernández ◽  
P. Bolgiani ◽  
D. Santos-Muñoz ◽  
L. Quitián-Hernández ◽  
M. Sastre ◽  
...  
Keyword(s):  
2009 ◽  
Vol 9 (22) ◽  
pp. 8825-8840 ◽  
Author(s):  
A. J. McDonald ◽  
S. E. George ◽  
R. M. Woollands

Abstract. A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June–July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.


2020 ◽  
Author(s):  
Pierre-Dominique Pautet ◽  
Michael J. Taylor ◽  
David C. Fritts ◽  
Diego Janches ◽  
Natalie Kaifler ◽  
...  

2018 ◽  
Vol 75 (8) ◽  
pp. 2721-2740 ◽  
Author(s):  
Christopher G. Kruse ◽  
Ronald B. Smith

AbstractMountain waves (MWs) are generated during episodic cross-barrier flow over broad-spectrum terrain. However, most MW drag parameterizations neglect transient, broad-spectrum dynamics. Here, the influences of these dynamics on both nondissipative and dissipative momentum deposition by MW events are quantified in a 2D, horizontally periodic idealized framework. The influences of the MW spectrum, vertical wind shear, and forcing duration are investigated. MW events are studied using three numerical models—the nonlinear, transient WRF Model; a linear, quasi-transient Fourier-ray model; and an optimally tuned Lindzen-type saturation parameterization—allowing quantification of total, nondissipative, and dissipative MW-induced decelerations, respectively. Additionally, a pseudomomentum diagnostic is used to estimate nondissipative decelerations within the WRF solutions. For broad-spectrum MWs, vertical dispersion controls spectrum evolution aloft. Short MWs propagate upward quickly and break first at the highest altitudes. Subsequently, the arrival of additional longer MWs allows breaking at lower altitudes because of their greater contribution to u variance. As a result, minimum breaking levels descend with time and event duration. In zero- and positive-shear environments, this descent is not smooth but proceeds downward in steps as a result of vertically recurring steepening levels. Nondissipative decelerations are nonnegligible and influence an MW’s approach to breaking, but breaking and dissipative decelerations quickly develop and dominate the subsequent evolution. Comparison of the three model solutions suggests that the conventional instant propagation and monochromatic parameterization assumptions lead to too much MW drag at too low an altitude.


The Geologist ◽  
1863 ◽  
Vol 6 (9) ◽  
pp. 321-327

Of Mr. Ruskin's admirable lecture on the Alps of Savoy, delivered at the Royal Institution, we have already given an abstract at p. 256. We recur again to that subject because there were two points so forcibly and so well put by Mr. Ruskin, and so seemingly pregnant with the germs of future progress to our science, as to merit the special attention of geologists. These were the inefficacy of ice to scoop out lake-basins, and the mighty wave-like action of force that crumbles the gigantic rock-masses of our mountains almost into wave-like breakers ready to nod and fall. “Geology,” well remarked Mr. Ruskin in his opening words, “properly divides itself into two branches,—the study, first, of the materials and chronology of deposits; and, secondly, of their present forms.” The interest attaching to the relics of organic life, without doubt, has carried geologists away from the study of external forms; and this almost exclusion of regard for structural phenomena is the more to be regretted that it is the threshold of the grand field of record of ancient physical phenomena. The gigantic mountain-wave is not heaved up and rolled onwards in a few moments, like the surging waves of the sea; the particles of rock-masses are not quickly moved about like the water-atoms of the dancing ripples on our rivers, but slowly—slowly indeed—are the almost immovably linked-together particles forced onwards by some ponderous pressure, some solemn but irresistible force, due perhaps to the very strain of the earth's altering rotation or the leverage of its surface inequalities upon its central axis.


2018 ◽  
Vol 75 (8) ◽  
pp. 2599-2613 ◽  
Author(s):  
Ronald B. Smith ◽  
Christopher G. Kruse

Abstract We propose a simplified scheme to predict mountain wave drag over complex terrain using only the regional-average low-level wind components U and V. The scheme is tuned and tested on data from the South Island of New Zealand, a rough and highly anisotropic terrain. The effect of terrain anisotropy is captured with a hydrostatically computed, 2 × 2 positive-definite wave drag matrix. The wave drag vector is the product of the wind vector and the drag matrix. The nonlinearity in wave generation is captured using a Gaussian terrain smoothing inversely proportional to wind speed. Wind speeds of |U| = 10, 20, and 30 m s−1 give smoothing scales of L = 54, 27, and 18 km, respectively. This smoothing treatment of nonlinearity is consistent with recent aircraft data and high-resolution numerical modeling of waves over New Zealand, indicating that the momentum flux spectra shift to shorter waves during high-drag conditions. The drag matrix model is tested against a 3-month time series of realistic full-physics wave-resolving flow calculations. Correlation coefficients approach 0.9 for both zonal and meridional drag components.


2017 ◽  
Author(s):  
Romy Heller ◽  
Christiane Voigt ◽  
Stuart Beaton ◽  
Andreas Dörnbrack ◽  
Stefan Kaufmann ◽  
...  

Abstract. The water vapor distribution in the upper troposphere/lower stratosphere region (UTLS) has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyse measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR GV research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m−2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our regional study may motivate further investigations of the global effects of mountain waves on the UTLS water vapor distributions and its radiative effects.


2007 ◽  
Vol 64 (6) ◽  
pp. 1857-1879 ◽  
Author(s):  
Gregory S. Poulos ◽  
James E. Bossert ◽  
Thomas B. McKee ◽  
Roger A. Pielke

Via numerical analysis of detailed simulations of an early September 1993 case night, the authors develop a conceptual model of the interaction of katabatic flow in the nocturnal boundary layer with mountain waves (MKI). A companion paper (Part I) describes the synoptic and mesoscale observations of the case night from the Atmospheric Studies in Complex Terrain (ASCOT) experiment and idealized numerical simulations that manifest components of the conceptual model of MKI presented herein. The reader is also referred to Part I for detailed scientific background and motivation. The interaction of these phenomena is complicated and nonlinear since the amplitude, wavelength, and vertical structure of the mountain-wave system developed by flow over the barrier owes some portion of its morphology to the evolving atmospheric stability in which the drainage flows develop. Simultaneously, katabatic flows are impacted by the topographically induced gravity wave evolution, which may include significantly changing wavelength, amplitude, flow magnitude, and wave breaking behavior. In addition to effects caused by turbulence (including scouring), perturbations to the leeside gravity wave structure at altitudes physically distant from the surface-based katabatic flow layer can be reflected in the katabatic flow by transmission through the atmospheric column. The simulations show that the evolution of atmospheric structure aloft can create local variability in the surface pressure gradient force governing katabatic flow. Variability is found to occur on two scales, on the meso-β due to evolution of the mountain-wave system on the order of one hour, and on the microscale due to rapid wave evolution (short wavelength) and wave breaking–induced fluctuations. It is proposed that the MKI mechanism explains a portion of the variability in observational records of katabatic flow.


Sign in / Sign up

Export Citation Format

Share Document