The enigma of phosphoinositides and their derivatives: Their role in regulation of subcellular compartment morphology

2022 ◽  
Vol 1864 (1) ◽  
pp. 183780
Author(s):  
Banafshé Larijani ◽  
Lior Pytowski ◽  
David J. Vaux
Author(s):  
Songquan Sun ◽  
Richard D. Leapman

Analyses of ultrathin cryosections are generally performed after freeze-drying because the presence of water renders the specimens highly susceptible to radiation damage. The water content of a subcellular compartment is an important quantity that must be known, for example, to convert the dry weight concentrations of ions to the physiologically more relevant molar concentrations. Water content can be determined indirectly from dark-field mass measurements provided that there is no differential shrinkage between compartments and that there exists a suitable internal standard. The potential advantage of a more direct method for measuring water has led us to explore the use of electron energy loss spectroscopy (EELS) for characterizing biological specimens in their frozen hydrated state.We have obtained preliminary EELS measurements from pure amorphous ice and from cryosectioned frozen protein solutions. The specimens were cryotransfered into a VG-HB501 field-emission STEM equipped with a 666 Gatan parallel-detection spectrometer and analyzed at approximately −160 C.


2021 ◽  
pp. 0271678X2110041
Author(s):  
Jesse A Stokum ◽  
Bosung Shim ◽  
Weiliang Huang ◽  
Maureen Kane ◽  
Jesse A Smith ◽  
...  

The perivascular astrocyte endfoot is a specialized and diffusion-limited subcellular compartment that fully ensheathes the cerebral vasculature. Despite their ubiquitous presence, a detailed understanding of endfoot physiology remains elusive, in part due to a limited understanding of the proteins that distinguish the endfoot from the greater astrocyte body. Here, we developed a technique to isolate astrocyte endfeet from brain tissue, which was used to study the endfoot proteome in comparison to the astrocyte somata. In our approach, brain microvessels, which retain their endfoot processes, were isolated from mouse brain and dissociated, whereupon endfeet were recovered using an antibody-based column astrocyte isolation kit. Our findings expand the known set of proteins enriched at the endfoot from 10 to 516, which comprised more than 1/5th of the entire detected astrocyte proteome. Numerous critical electron transport chain proteins were expressed only at the endfeet, while enzymes involved in glycogen storage were distributed to the somata, indicating subcellular metabolic compartmentalization. The endfoot proteome also included numerous proteins that, while known to have important contributions to blood-brain barrier function, were not previously known to localize to the endfoot. Our findings highlight the importance of the endfoot and suggest new routes of investigation into endfoot function.


2004 ◽  
Vol 24 (11) ◽  
pp. 4848-4857 ◽  
Author(s):  
Jana Gerber ◽  
Karina Neumann ◽  
Corinna Prohl ◽  
Ulrich Mühlenhoff ◽  
Roland Lill

ABSTRACT Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.


1997 ◽  
Vol 186 (8) ◽  
pp. 1299-1306 ◽  
Author(s):  
James R. Drake ◽  
Paul Webster ◽  
John C. Cambier ◽  
Ira Mellman

B cell receptor (BCR)-mediated antigen processing is a mechanism that allows class II–restricted presentation of specific antigen by B cells at relatively low antigen concentrations. Although BCR-mediated antigen processing and class II peptide loading may occur within one or more endocytic compartments, the functions of these compartments and their relationships to endosomes and lysosomes remain uncertain. In murine B cells, at least one population of class II– containing endocytic vesicles (i.e., CIIV) has been identified and demonstrated to be distinct both physically and functionally from endosomes and lysosomes. We now demonstrate the delivery of BCR-internalized antigen to CIIV within the time frame during which BCR-mediated antigen processing and formation of peptide–class II complexes occurs. Only a fraction of the BCR-internalized antigen was delivered to CIIV, with the majority of internalized antigen being delivered to lysosomes that are largely class II negative. The extensive colocalization of BCR-internalized antigen and newly synthesized class II molecules in CIIV suggests that CIIV may represent a specialized subcellular compartment for BCR-mediated antigen processing. Additionally, we have identified a putative CIIV-marker protein, immunologically related to the Igα subunit of the BCR, which further illustrates the unique nature of these endocytic vesicles.


1992 ◽  
Vol 70 (12) ◽  
pp. 1347-1355 ◽  
Author(s):  
H. S. Roychowdhury ◽  
T. J. MacAlister ◽  
J. W. Costerton ◽  
M. Kapoor

The most abundant heat-shock protein of Neurospora crassa is a multimeric glycoprotein of 80-kilodaltons (i.e., HSP80), induced strongly by hyperthermia and at a lower level by sodium arsenite, ethanol, and carbon source depletion. Immunoelectron microscopy, using indirect immunogold labelling demonstrated that HSP80 was undetectable in mycelium cultured at the normal growth temperature of 28 °C, but it appeared rapidly following the commencement of heat-shock treatment at 48 °C. HSP80, visualized by the gold label, was observed almost exclusively in the cytoplasm, exhibiting a uniform distribution. Association of this protein with cellular membranes and (or) targeting to a particular subcellular compartment or organelle was not apparent.Key words: 80-kilodalton heat-shock protein, Neurospora, intracellular location, immunoelectron microscopy.


Traffic ◽  
2014 ◽  
Vol 15 (11) ◽  
pp. 1219-1234 ◽  
Author(s):  
Christian Peter Poulsen ◽  
Adiphol Dilokpimol ◽  
Grégory Mouille ◽  
Meike Burow ◽  
Naomi Geshi

Author(s):  
Samina Momtaz ◽  
Belen Molina ◽  
Luwanika Mlera ◽  
Felicia Goodrum ◽  
Jean M. Wilson

AbstractHuman cytomegalovirus (HCMV), while highly restricted for the human species, infects an unlimited array of cell types in the host. Patterns of infection are dictated by the cell type infected, but cell type-specific factors and how they impact tropism for specific cell types is poorly understood. Previous studies in primary endothelial cells showed that HCMV infection induces large multivesicular-like bodies that incorporate viral products including dense bodies and virions. Here we define the nature of these large vesicles using a recombinant virus where UL32, encoding the pp150 tegument protein, is fused in frame with green fluorescent protein (GFP, TB40/E-UL32-GFP). Cells were fixed and labeled with antibodies against subcellular compartment markers and imaged using confocal and super-resolution microscopy. In fibroblasts, UL32-GFP-positive vesicles were marked with classical markers of MVBs, including CD63 and lysobisphosphatidic acid (LBPA), both classical MVB markers, as well as the clathrin and LAMP1. Unexpectedly, UL32-GFP-positive vesicles in endothelial cells were not labeled by CD63, and LBPA was completely lost from infected cells. We defined these UL32-positive vesicles in endothelial cells using markers for the cis-Golgi (GM130), lysosome (LAMP1), and autophagy (LC3B). These findings suggest that virus-containing MVBs in fibroblasts are derived from the canonical endocytic pathway and takeover classical exosomal release pathway. Virus containing MVBs in HMVECs are derived from the early biosynthetic pathway and exploit a less characterized early Golgi-LAMP1-associated non-canonical secretory autophagy pathway. These results reveal striking cell-type specific membrane trafficking differences in host pathways that are exploited by HCMV.ImportanceHuman cytomegalovirus (HCMV) is a herpesvirus that, like all herpesvirus, that establishes a life long infection. HCMV remains a significant cause of morbidity and mortality in the immunocompromised and HCMV seropositivity is associated with increased risk vascular disease. HCMV infects many cells in the human and the biology underlying the different patterns of infection in different cell types is poorly understood. Endothelial cells are important target of infection that contribute to hematogenous spread of the virus to tissues. Here we define striking differences in the biogenesis of large vesicles that incorporate virions in fibroblasts and endothelial cells. In fibroblasts, HCMV is incorporated into canonical MVBs derived from an endocytic pathway, whereas HCMV matures through vesicles derived from the biosynthetic pathway in endothelial cells. This work defines basic biological differences between these cell types that may impact the outcome of infection.


Development ◽  
2015 ◽  
Vol 142 (22) ◽  
pp. 3964-3973 ◽  
Author(s):  
Linda S. Nikolova ◽  
Mark M. Metzstein

1999 ◽  
Vol 112 (24) ◽  
pp. 4589-4599 ◽  
Author(s):  
F. Li ◽  
Y. Zhang ◽  
C. Wu

Integrin-linked kinase (ILK) is a ubiquitously expressed protein serine/threonine kinase that has been implicated in integrin-, growth factor- and Wnt-signaling pathways. In this study, we show that ILK is a constituent of cell-matrix focal adhesions. ILK was recruited to focal adhesions in all types of cells examined upon adhesion to a variety of extracellular matrix proteins. By contrast, ILK was absent in E-cadherin-mediated cell-cell adherens junctions. In previous studies, we have identified PINCH, a protein consisting of five LIM domains, as an ILK binding protein. We demonstrate in this study that the ILK-PINCH interaction requires the N-terminal-most ANK repeat (ANK1) of ILK and one (the C-terminal) of the two zinc-binding modules within the LIM1 domain of PINCH. The ILK ANK repeats domain, which is capable of interacting with PINCH in vitro, could also form a complex with PINCH in vivo. However, the efficiency of the complex formation or the stability of the complex was markedly reduced in the absence of the C-terminal domain of ILK. The PINCH binding defective ANK1 deletion ILK mutant, unlike the wild-type ILK, was unable to localize and cluster in focal adhesions, suggesting that the interaction with PINCH is necessary for focal adhesion localization and clustering of ILK. The N-terminal ANK repeats domain, however, is not sufficient for mediating focal adhesion localization of ILK, as an ILK mutant containing the ANK repeats domain but lacking the C-terminal integrin binding site failed to localize in focal adhesions. These results suggest that focal adhesions are a major subcellular compartment where ILK functions in intracellular signal transduction, and provide important evidence for a critical role of PINCH and integrins in regulating ILK cellular function.


Sign in / Sign up

Export Citation Format

Share Document