The role of DNA methylation in the mechanisms of memory reconsolidation and development of amnesia

2015 ◽  
Vol 279 ◽  
pp. 148-154 ◽  
Author(s):  
V.P. Nikitin ◽  
S.V. Solntseva ◽  
P.V. Nikitin ◽  
S.A. Kozyrev
2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2018 ◽  
Vol 32 (10) ◽  
pp. 5215-5226 ◽  
Author(s):  
Benjamin P. Larkin ◽  
Sarah J. Glastras ◽  
Hui Chen ◽  
Carol A. Pollock ◽  
Sonia Saad

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Peiru Liu ◽  
Jing Zhang ◽  
Duo Du ◽  
Dandan Zhang ◽  
Zelin Jin ◽  
...  

Abstract Background Thoracic aortic dissection (TAD) is a severe disease with limited understandings in its pathogenesis. Altered DNA methylation has been revealed to be involved in many diseases etiology. Few studies have examined the role of DNA methylation in the development of TAD. This study explored alterations of the DNA methylation landscape in TAD and examined the potential role of cell-free DNA (cfDNA) methylation as a biomarker in TAD diagnosis. Results Ascending aortic tissues from TAD patients (Stanford type A; n = 6) and healthy controls (n = 6) were first examined via whole-genome bisulfite sequencing (WGBS). While no obvious global methylation shift was observed, numerous differentially methylated regions (DMRs) were identified, with associated genes enriched in the areas of vasculature and heart development. We further confirmed the methylation and expression changes in homeobox (Hox) clusters with 10 independent samples using bisulfite pyrosequencing and quantitative real-time PCR (qPCR). Among these, HOXA5, HOXB6 and HOXC6 were significantly down-regulated in TAD samples relative to controls. To evaluate cfDNA methylation pattern as a biomarker in TAD diagnosis, cfDNA from TAD patients (Stanford type A; n = 7) and healthy controls (n = 4) were examined by WGBS. A prediction model was built using DMRs identified previously from aortic tissues on methylation data from cfDNA. Both high sensitivity (86%) and specificity (75%) were achieved in patient classification (AUC = 0.96). Conclusions These findings showed an altered epigenetic regulation in TAD patients. This altered epigenetic regulation and subsequent altered expression of genes associated with vasculature and heart development, such as Hox family genes, may contribute to the loss of aortic integrity and TAD pathogenesis. Additionally, the cfDNA methylation in TAD was highly disease specific, which can be used as a non-invasive biomarker for disease prediction.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueying Qin ◽  
Ida K. Karlsson ◽  
Yunzhang Wang ◽  
Xia Li ◽  
Nancy Pedersen ◽  
...  

Abstract Background Studies on DNA methylation have the potential to discover mechanisms of cardiovascular disease (CVD) risk. However, the role of DNA methylation in CVD etiology remains unclear. Results We performed an epigenome-wide association study (EWAS) on CVD in a longitudinal sample of Swedish twins (535 individuals). We selected CpGs reaching the Bonferroni-corrected significance level (2 $$\times$$ ×  10–7) or the top-ranked 20 CpGs with the lowest P values if they did not reach this significance level in EWAS analysis associated with non-stroke CVD, overall stroke, and ischemic stroke, respectively. We further applied a bivariate autoregressive latent trajectory model with structured residuals (ALT-SR) to evaluate the cross-lagged effect between DNA methylation of these CpGs and cardiometabolic traits (blood lipids, blood pressure, and body mass index). Furthermore, mediation analysis was performed to evaluate whether the cross-lagged effects had causal impacts on CVD. In the EWAS models, none of the CpGs we selected reached the Bonferroni-corrected significance level. The ALT-SR model showed that DNA methylation levels were more likely to predict the subsequent level of cardiometabolic traits rather than the other way around (numbers of significant cross-lagged paths of methylation → trait/trait → methylation were 84/4, 45/6, 66/1 for the identified three CpG sets, respectively). Finally, we demonstrated significant indirect effects from DNA methylation on CVD mediated by cardiometabolic traits. Conclusions We present evidence for a directional association from DNA methylation on cardiometabolic traits and CVD, rather than the opposite, highlighting the role of epigenetics in CVD development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


Author(s):  
Tiantian Yue ◽  
Fei Sun ◽  
Faxi Wang ◽  
Chunliang Yang ◽  
Jiahui Luo ◽  
...  

AbstractThe methyl-CpG-binding domain 2 (MBD2) interprets DNA methylome-encoded information through binding to the methylated CpG DNA, by which it regulates target gene expression at the transcriptional level. Although derailed DNA methylation has long been recognized to trigger or promote autoimmune responses in type 1 diabetes (T1D), the exact role of MBD2 in T1D pathogenesis, however, remains poorly defined. Herein, we generated an Mbd2 knockout model in the NOD background and found that Mbd2 deficiency exacerbated the development of spontaneous T1D in NOD mice. Adoptive transfer of Mbd2−/− CD4 T cells into NOD.scid mice further confirmed the observation. Mechanistically, Th1 stimulation rendered the Stat1 promoter to undergo a DNA methylation turnover featured by the changes of DNA methylation levels or patterns along with the induction of MBD2 expression, which then bound to the methylated CpG DNA within the Stat1 promoter, by which MBD2 maintains the homeostasis of Th1 program to prevent autoimmunity. As a result, ectopic MBD2 expression alleviated CD4 T cell diabetogenicity following their adoptive transfer into NOD.scid mice. Collectively, our data suggest that MBD2 could be a viable target to develop epigenetic-based therapeutics against T1D in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document