Teniposide regulates the phenotype switching of vascular smooth muscle cells in a miR-21-dependent manner

2018 ◽  
Vol 506 (4) ◽  
pp. 1040-1046 ◽  
Author(s):  
Hao Han ◽  
Shu Yang ◽  
Yu Liang ◽  
Peng Zeng ◽  
Lipei Liu ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Nan Liu ◽  
Dazhi Shan ◽  
Ying Li ◽  
Hui Chen ◽  
Yonghong Gao ◽  
...  

Panax notoginsengsaponins (PNS) could maintain vascular smooth muscle cells (VSMCs) in stable phenotypes so as to keep blood vessel elasticity as well as prevent failing in endovascular treatment with stent. Downregulation of Notch3 expression in VSMCs could influence the phenotype of VSMCs under pathologic status. However, whether PNS is able to attenuate the Notch3 silencing induced phenotype switching of VSMCs remains poorly understood. Primary human VSMCs were transfected with a plasmid containing a small interfering RNA (siRNA) against Notch3 and then exposed to different doses of PNS. The control groups included cells not receiving any treatment and cells transfected with a control siRNA. Phenotypic switching was evaluated by observing cell morphology with confocal microscopy, as well as examiningα-SM-actin, SM22α, and OPN using Western blot. Downregulated Notch3 with a siRNA induced apparent phenotype switching, as reflected by morphologic changes, decreased expression ofα-SM-actin and SM22αand increased expression of OPN. These changes were inhibited by PNS in a dose-dependent manner. The phenotype switching of VSMCs induced by Notch3 knockdown could be inhibited by PNS in a dose-dependent manner. Our study provided new evidence for searching effective drug for amending stability of atherosclerotic disease.


1991 ◽  
Vol 260 (5) ◽  
pp. H1713-H1717 ◽  
Author(s):  
U. Ikeda ◽  
M. Ikeda ◽  
T. Oohara ◽  
A. Oguchi ◽  
T. Kamitani ◽  
...  

We have investigated the effect of interleukin 6 (IL-6) on the growth of vascular smooth muscle cells (VSMC) isolated from rat aortas. Murine recombinant IL-6 significantly increased the number of VSMC and stimulated tritiated thymidine incorporation into VSMC in a dose-dependent manner. The IL-6-induced thymidine incorporation into VSMC was totally inhibited by the Ca2+ channel blocker verapamil; however, IL-6 showed no effects on the intracellular Ca2+ level ([Ca2+]i) in VSMC. Antibody against platelet-derived growth factor (PDGF) also totally inhibited the IL-6-induced thymidine uptake. PDGF caused a significant increase in the [Ca2+]i, which was totally inhibited by verapamil. IL-6 mRNA was not detected in unstimulated “quiescent” VSMC, but its expression was stimulated by exposure of VSMC to 10% fetal bovine serum. Immunohistochemical study using anti-PDGF antibody showed that IL-6 stimulated PDGF production in VSMC. These results support the premise that IL-6 is released by VSMC in an autocrine manner and promotes the growth of VSMC via induction of endogenous PDGF production.


1997 ◽  
Vol 273 (2) ◽  
pp. H628-H633 ◽  
Author(s):  
J. W. Gu ◽  
T. H. Adair

We determined whether hypoxia-induced expression of vascular endothelial growth factor (VEGF) can be reversed by a normoxic environment. Dog myocardial vascular smooth muscle cells (MVSMCs) were exposed to hypoxia (1% O2) for 24 h and then returned to normoxia (20% O2). VEGF protein levels increased by more than fivefold after 24 h of hypoxia and returned to baseline within 24 h of the return of the cells to normoxia. Northern blot analysis showed that hypoxia caused a 5.5-fold increase in VEGF mRNA, and, again, the expression was reversed after reinstitution of normoxia. Additional measurements showed that basic fibroblast growth factor and platelet-derived growth factor protein levels were not induced by hypoxia and that hypoxia caused a fourfold decrease in transforming growth factor-beta 1 protein levels. Hypoxia conditioned media from MVSMCs caused human umbilical vein endothelial cells to increase [3H]thymidine incorporation by twofold, an effect that was blocked in a dose-dependent manner by anti-human VEGF antibody. The hypoxia conditioned media had no effect on MVSMC proliferation. These findings suggest that VEGF expression can be bidirectionally controlled by tissue oxygenation, and thus support the hypothesis that VEGF is a physiological regulator of angiogenesis.


2004 ◽  
Vol 23 (4) ◽  
pp. 233-237 ◽  
Author(s):  
Jialin Su ◽  
Jianfeng Li ◽  
Wenyan Li ◽  
Bella T. Altura ◽  
Burton M. Altura

Cocaine abuse is known to induce many adverse cardiovascular effects, including hypertension, atherosclerosis, and aortic dissection. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. This study was designed to investigate if primary cultured rat aortic vascular smooth muscle cells (VSMCs) can undergo apoptosis when treated with cocaine. After treatment with cocaine (10−6 to 10−4 M), morphological analysis of aortic VSMCs using confocal fluoresence microscopy showed that the percentage of apoptotic aortic VSMCs increased after cocaine (10−6 to 10−4 M) treatment for 12, 24, and 48 h. These results demonstrate that aortic VSMCs can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in cocaine abuse-induced aortic dissection, atherosclerosis, and hypertension.


2003 ◽  
Vol 81 (11) ◽  
pp. 1056-1063 ◽  
Author(s):  
Harjot K Saini ◽  
Sushil K Sharma ◽  
Peter Zahradka ◽  
Hideo Kumamoto ◽  
Nobuakira Takeda ◽  
...  

Although serotonin (5-HT) induced proliferation of vascular smooth muscle cells is considered to involve changes in intracellular Ca2+ ([Ca2+]i), the mechanism of Ca2+ mobilization by 5-HT is not well defined. In this study, we examined the effect of 5-HT on rat aortic smooth muscle cells (RASMCs) by Fura-2 microfluorometry for [Ca2+]i measurements. 5-HT was observed to increase the [Ca2+]i in a concentration- and time-dependent manner. This action of 5-HT was dependent upon the extracellular concentration of Ca2+ ([Ca2+]e) and was inhibited by both Ca2+ channel antagonists (verapamil and diltiazem) and inhibitors of sarcoplasmic reticular Ca2+ pumps (thapsigargin and cyclopia zonic acid). The 5-HT-induced increase in [Ca2+]i was blocked by sarpogrelate, a 5-HT2A-receptor antagonist, but not by different agents known to block other receptor sites. 5-HT-receptor antagonists such as ketanserin, cinanserin, and mianserin, unlike methysergide, were also found to inhibit the 5-HT-induced Ca2+ mobilization, but these agents were less effective in comparison to sarpogrelate. On the other hand, the increase in [Ca2+]i in RASMCs by ATP, angiotensin II, endothelin-1, or phorbol ester was not affected by sarpogrelate. These results indicate that Ca2+ mobilization in RASMCs by 5-HT is mediated through the activation of 5-HT2A receptors and support the view that the 5-HT-induced increase in [Ca2+]i involves both the extracellular and intracellular sources of Ca2+.Key words: sarpogrelate, serotonin, vascular smooth muscle cells, intracellular Ca2+.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiong Hu ◽  
Marco Sisignano ◽  
Roman Brecht ◽  
Natarajan Perumal ◽  
Carlo Angioni ◽  
...  

AbstractCytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44−/− and sEH−/− mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.


2018 ◽  
Vol 50 (2) ◽  
pp. 745-756 ◽  
Author(s):  
Xing-Rong An ◽  
Xin Li ◽  
Wei Wei ◽  
Xiao-Xue Li ◽  
Ming Xu

Background/Aims: The phenotype switching of vascular smooth muscle cells (VSMCs) was associated with the onset or progression of the atherogenic process in type 2 diabetes mellitus (T2DM). Alprostadil (Prostaglandin E1, PGE1) as a bioactive drug had a protective effect on vascular function. However, it is unknown whether PGE1 inhibited the phenotype switching in VSMCs via autophagy, which played a protective role in the vascular complications of diabetes. Methods: The phenotype switching was induced by high glucose (HG, 25mM) in VSMCs, the protein expression was measured by western blot analysis and immunofluorescent staining. In vivo study, vascular lesion and dysfunction were produced in the rats fed with high fat diet (HFD) combined with low dose streptozotocin (STZ) administration. Results: The decrease of α-SMA and the increase of vimentin, collagen I and proliferating cell nuclear antigen (PCNA) were found in HG-treated VSMCs. Along with more abundance of p62, autophagy markers LC3B and Beclin-1 significantly decreased in VSMCs exposed to HG. Such abnormal changes were significantly reversed by PGE1, which mimicked the role of autophagy activator rapamycin and was dramatically counteracted by 3-methyladenine, an autophagy inhibitor. Furthermore, PGE1 suppressed the phosphorylation of AKT and mTOR, which negatively regulated autophagy level in VSMCs. In vivo study, PGE1 remarkably improved the endothelium-independent contraction of thoracic aorta and restored the expression of α-SMA, osteopontin, LC3B, phosphorylated mTOR in the artery media of T2DM rats. Conclusion: These results demonstrated that PGE1 maintained the phenotype of VSMCs via the AKT/mTOR-dependent autophagy, which prevented diabetes-induced vascular complications.


1993 ◽  
Vol 264 (2) ◽  
pp. H617-H624 ◽  
Author(s):  
W. Durante ◽  
V. B. Schini ◽  
S. Catovsky ◽  
M. H. Kroll ◽  
P. M. Vanhoutte ◽  
...  

Experiments were performed to examine the effect of the major fibrinolytic protease, plasmin, on the production of nitric oxide from interleukin-1 beta (IL-1 beta)-treated cultured human and rat aortic smooth muscle cells. Incubation of vascular smooth muscle cells with IL-1 beta resulted in significant accumulation of nitrite and nitrate in the culture media. Plasmin, either added exogenously or generated by the reaction of tissue plasminogen activator with plasminogen, potentiated the IL-1 beta-mediated release of nitrite and nitrate from smooth muscle cells in a concentration-dependent manner, without affecting the production of nitrite and nitrate from cells untreated with IL-1 beta. This potentiating effect was abolished when plasmin was incubated with the protease inhibitor, alpha 2-antiplasmin. The perfusates from columns containing IL-1 beta-treated smooth muscle cells relaxed detector blood vessels without endothelium, and the addition of IL-1 beta-treated smooth muscle cells to suspensions of indomethacin-treated platelets inhibited their aggregation. Untreated smooth muscle cells or cells treated with plasmin alone did not have such effects. However, the simultaneous treatment of smooth muscle cells with IL-1 beta and plasmin markedly enhanced both the relaxing activities of the perfusates and the inhibition of platelet aggregation. Treatment of smooth muscle cells with NG-nitro-L-arginine inhibited the cytokine-mediated effects as well as the potentiating effect of plasmin. These results demonstrate that the plasmin can enhance the production of nitric oxide by IL-1 beta-treated vascular smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document