Preparation and characterization of curcumin functionalized copper nanoparticles and their application enhances disease resistance in chickpea against wilt pathogen

2020 ◽  
Vol 29 ◽  
pp. 101823
Author(s):  
M. Sathiyabama ◽  
M. Indhumathi ◽  
T. Amutha
Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4364
Author(s):  
Rutaba Amjad ◽  
Bismillah Mubeen ◽  
Syed Shahbaz Ali ◽  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
...  

The use of biomaterials in the synthesis of nanoparticles is one of the most up-to-date focuses in modern nanotechnologies and nanosciences. More and more research on green methods of producing metal oxide nanoparticles (NP) is taking place, with the goal to overcome the possible dangers of toxic chemicals for a safe and innocuous environment. In this study, we synthesized copper nanoparticles (CuNPs) using Fortunella margarita leaves’ extract, which reflects its novelty in the field of nanosciences. The visual observation of a color change from dark green to bluish green clearly shows the instant and spontaneous formation of CuNPs when the phytochemicals of F. margarita come in contact with Cu+2 ions. The synthesis of CuNPs was carried out at different conditions, including pH, temperature, concentration ratio and time, and were characterized with UV-Vis absorption spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The UV-Vis analysis reveals the surface plasmon resonance property (SPR) of CuNPs, showing a characteristic absorption peak at 679 nm, while SEM reveals the spherical but agglomerated shape of CuNPs of the size within the range of 51.26–56.66 nm.


2019 ◽  
Vol 117 (4) ◽  
pp. 617
Author(s):  
Anand C. Reddy ◽  
B. Lavanya ◽  
T. Tejaswi ◽  
E. Sreenivasa Rao ◽  
D. C. Lakshmana Reddy

2018 ◽  
Author(s):  
Sandeep R. Marla ◽  
Kevin Chu ◽  
Satya Chintamanani ◽  
Dilbag Multani ◽  
Antje Klempien ◽  
...  

ABSTRACTAdult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused byCochliobolus carbonumrace 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele,Hm1A, at thehm1locus. In contrast, wild type alleles ofhm1provide complete protection at all developmental stages and in every part of the maize plant.Hm1encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization ofHm1Aruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature ofHm1Aand its APR phenotype was confirmed by the generation of two new APR alleles ofHm1by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.AUTHOR SUMMARYAdult plant resistance (APR) is a phenomenon in which disease resistance genes are able to confer resistance at the adult stages of the plant but somehow fail to do so at the seedling stages. Despite the widespread occurrence of APR in various plant diseases, the mechanism underlying this trait remains obscure. It is not due to the differential transcription of these genes, and here we show that it is also not due to the differential translation or activity of the APR alleles of the maizehm1gene at different stages of development. Using a combination of molecular genetics, biochemistry and physiology, we present multiple lines of evidence that demonstrate that APR is a feature or symptom of weak forms of resistance. While the mature parts of the plant are metabolically robust enough to manifest resistance, seedling tissues are not, leaving them vulnerable to disease. Growth conditions that compromise the photosynthetic output of the plant further deteriorate the ability of the seedlings to protect themselves from pathogens.One sentence summaryCharacterization of adult plant resistance in the maize-CCR1 pathosystem reveals a causal link between weak resistance and APR.


Sign in / Sign up

Export Citation Format

Share Document