Acute stress differentially affects grooming subtypes and ultrasonic vocalisations in the open-field and home-cage test in rats

2020 ◽  
Vol 176 ◽  
pp. 104140 ◽  
Author(s):  
Mijail Rojas-Carvajal ◽  
Juan C. Brenes
Keyword(s):  
2016 ◽  
Vol 86 (1-2) ◽  
pp. 36-47 ◽  
Author(s):  
Imen Dridi ◽  
Nidhal Soualeh ◽  
Torsten Bohn ◽  
Rachid Soulimani ◽  
Jaouad Bouayed

Abstract.This study examined whether perinatal exposure to polluted eels (Anguilla anguilla L.) induces changes in the locomotor activity of offspring mice across lifespan (post-natal days (PNDs) 47 – 329), using the open field and the home cage activity tests. Dams were exposed during gestation and lactation, through diets enriched in eels naturally contaminated with pollutants including PCBs. Analysis of the eel muscle focused on the six non-dioxin-like (NDL) indicator PCBs (Σ6 NDL-PCBs: 28, 52, 101, 138, 153 and 180). Four groups of dams (n = 10 per group) received either a standard diet without eels or eels (0.8 mg/kg/day) containing 85, 216, or 400 ng/kg/day of ϵ6 NDL-PCBs. The open field test showed that early-life exposure to polluted eels increased locomotion in female offspring of exposed dams but not in males, compared to controls. This hyperlocomotion appeared later in life, at PNDs 195 and 329 (up to 32 % increase, p < 0.05). In addition, overactivity was observed in the home cage test at PND 305: exposed offspring females showed a faster overall locomotion speed (3.6 – 4.2 cm/s) than controls (2.9 cm/s, p <0.05); again, males remained unaffected. Covered distances in the home cage test were only elevated significantly in offspring females exposed to highest PCB concentrations (3411 ± 590 cm vs. 1377 ± 114 cm, p < 0.001). These results suggest that early-life exposure to polluted eels containing dietary contaminants including PCBs caused late, persistent and gender-dependent neurobehavioral hyperactive effects in offspring mice. Furthermore, female hyperactivity was associated with a significant inhibition of acetylcholinesterase activity in the hippocampus and the prefrontal cortex.


2019 ◽  
Vol 41 (5) ◽  
pp. 859-859
Author(s):  
Erum Shireen Erum Shireen ◽  
Wafa Binte Ali Wafa Binte Ali ◽  
Maria Masroor Maria Masroor ◽  
Saeeda Bano Saeeda Bano ◽  
Samina Iqbal Samina Iqbal ◽  
...  

Acute exposure to stress is connected to many disorders that promote the toxicity of oxygen radical generators leading to increase in the levels of enzymes and also the activation of the HPA axis. The present study uses a preclinical approach to elucidate some prospective stress-induced behavioral and biochemical effects. The aim of current study was to investigate the relationship between stress and behavioral changes after exposing animals to 2h immobilization stress. We also evaluated the concentration of corticosterone, glucose and endogenous leptin levels in unstressed and stressed animals to explore the possible role of HPA axis in the modulation of stressed induced behavioral deficits. Rats were divided into stressed and unstressed groups. Behavioral activities were monitored in open field activity and light dark transition box after the termination of 2h immobilization period. Animals were then decapitated and plasma samples were collected for catalase, SOD, corticosterone, and glucose estimation. Results showed that exposure to acute stress produced a significant decrease in the activity of rats in the novel environment (open field) and light dark transition box. On the other hand, concomitant elevated level of peripheral markers of oxidative stress such as oxidative enzymes, corticosterone and endogenous leptin were also observed. Therefore, current study seems to suggest an important role of compounds having antioxidant properties for the treatment of stress and related disorders.


1989 ◽  
Vol 8 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Virginia Clayton Moser

Observational tests to assess the behavioral and neurologic integrity of laboratory rats have been advanced for use in the primary screening of chemicals to detect neurotoxic potential. To examine the use of such an approach, we are systematically using a functional observational battery (FOB) to characterize known neurotoxicants and to assess its selectivity, reliability, specificity, and sensitivity. Our FOB is a series of tests that includes home cage and open field observations, neuromuscular and sensorimotor tests, and physiologic measures. Described in this article are the compounds we have tested to date and how the data have been integrated to produce a profile of effects for each. We have found the FOB to be sensitive to a variety of neurotoxicants, whose effects can be distinguished using a type of profile analysis as illustrated herein. This research effort provides important information about both the execution and the interpretation of FOB studies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Amanda J. Barabas ◽  
Jeffrey R. Lucas ◽  
Marisa A. Erasmus ◽  
Heng-Wei Cheng ◽  
Brianna N. Gaskill

Aggression among group housed male mice continues to challenge laboratory animal researchers because mitigation strategies are generally applied at the cage level without a good understanding of how it affects the dominance hierarchy. Aggression within a group is typically displayed by the dominant mouse targeting lower ranking subordinates; thus, the strategies for preventing aggression may be more successful if applied specifically to the dominant mouse. Unfortunately, dominance rank is often not assessed because of time intensive observations or tests. Several correlates of dominance status have been identified, but none have been directly compared to home cage behavior in standard housing. This study assessed the convergent validity of three dominance correlates (urinary darcin, tube test score, preputial gland to body length ratio) with wound severity and rankings based on home cage behavior, using factor analysis. Discriminant validity with open field measures was assessed to determine if tube test scores are independent of anxiety. Cages were equally split between SJL and albino C57BL/6 strains and group sizes of 3 or 5 (N = 24). Home cage behavior was observed during the first week, and dominance measures were recorded over the second. After controlling for strain and group size, darcin and preputial ratio had strong loadings on the same factor, which was a significant predictor of home cage ranking showing strong convergent validity. Tube test scores were not significantly impacted by open field data, showing discriminant validity. Social network analysis revealed that despotic power structures were prevalent, aggressors were typically more active and rested away from cage mates, and the amount of social investigation and aggression performed by an individual were highly correlated. Data from this study show that darcin and preputial ratio are representative of home cage aggression and provide further insight into individual behavior patterns in group housed male mice.


Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 230-239 ◽  
Author(s):  
Sonoko Ogawa ◽  
Johnny Chan ◽  
Jan-Åke Gustafsson ◽  
Kenneth S. Korach ◽  
Donald W. Pfaff

Abstract Estrogens are known to increase running wheel activity of rodents primarily by acting on the medial preoptic area (mPOA). The mechanisms of this estrogenic regulation of running wheel activity are not completely understood. In particular, little is known about the separate roles of two types of estrogen receptors, ERα and ERβ, both of which are expressed in mPOA neurons. In the present study the effects of continuous estrogen treatment on running wheel activity were examined in male and female mice specifically lacking either the ERα (αERKO) or the ERβ (βERKO) gene. Mice were gonadectomized and 1 wk later implanted with either a low dose (16 ng/d) or a high dose (160 ng/d) of estradiol benzoate (EB) or with a placebo control pellet. Home cage running wheel activity was recorded for 9 d starting 10 d after EB implants. The same mice were also tested for open field activity before and after EB implants. In both female and male αERKO mice, running wheel activity was not different from that in corresponding wild-type (αWT) mice in placebo control groups. In both females and males it was increased by EB only in αWT, not αERKO, mice. In βERKO mice, on the other hand, both doses of EB equally increased running wheel activity in both sexes just as they did in βWT mice. Absolute numbers of daily revolutions of EB-treated groups, however, were significantly lower in βERKO females compared with βWT females. Before EB treatment, gonadectomized αERKO female were significantly less active than αWT mice in open field tests, whereas βERKO females tended to be more active than βWT mice. In male mice there were no effect of ERα or ERβ gene knockout on open field activity. Unlike its effect on running wheel activity, EB treatment induced only a small increase in open field activity in female, but not male, mice. These findings indicate that 1) in both sexes estrogenic regulation of running wheel activity is primarily mediated through the ERα, not the ERβ; and 2) hormone/genotype effects are specific to the type of locomotor activity (i.e. home cage running wheel activity and open field activity) measured.


2011 ◽  
Vol 10 (6) ◽  
pp. 673-682 ◽  
Author(s):  
A. Langford-Smith ◽  
M. Malinowska ◽  
K. J. Langford-Smith ◽  
G. Wegrzyn ◽  
S. Jones ◽  
...  

2019 ◽  
Vol 23 (1) ◽  
pp. 55-61
Author(s):  
E. Y. Bazhenova ◽  
D. V. Fursenko ◽  
N. V. Khotskin ◽  
I. E. Sorokin ◽  
A. V. Kulikov

Decrease in natural illumination in fall/winter months causes depressive-like seasonal affective disorders in vulnerable individuals. Obesity is another risk factor of depression. The lethal yellow (AY) mutation causes ectopic expression of agouti protein in the brain. Mice heterozygous for AY mutation (AY/a) are obese compared to their wild-type littermates (a/a). The main aims of the study were to investigate the effects of AY mutation, photoperiod and the interaction between these factors on daily activity dynamics, feeding, locomotor and exploratory activities, anxiety-related and depressive-like behaviors in mild stress condition. Six weeks old mouse males of AY/a and a/a lines were divided into four groups eight animals each and exposed to long- (14 h light and 10 h darkness) or short- (4 h light and 20 h darkness) day conditions for 28 days. Then the behavior of these mice was successively investigated in the home cage, open field, elevated plus-maze and forced swim tests. We did not observed any effect of AY mutation on the general activity, water and food consumption in the home cage; locomotion and exploration in the open field test; anxiety-related behavior in the open field and elevated plus-maze tests. At the same time, AY mutation increased depressive-like immobility time in the forced swim test (F1.28 = 20.03, p = 0.00012). Shortday conditions decreased nocturnal activity in the home cage, as well as locomotion (F1.28 = 16.33, p = 0.0004) and exploration (F1.28 = 16.24, p < 0.0004) in the open field test. Moreover, short-day exposition decreased time spent in the center of the open field (F1.28 = 6.57, p = 0.016) and in the open arms of the elevated plus-maze (F1.28 = 12.08, p = 0.0017) tests and increased immobility time in the forced swim test (F1.28 = 9.95, p = 0.0038). However, no effect of the interaction between AY mutation and photoperiod on immobility time in the forced swim test was observed. Therefore, short-day photoperiod and AY mutation increased depressive-like behavior in the forced swim test by means of different mechanisms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256706
Author(s):  
Hasriadi ◽  
Peththa Wadu Dasuni Wasana ◽  
Opa Vajragupta ◽  
Pornchai Rojsitthisak ◽  
Pasarapa Towiwat

The use of endotoxin, such as lipopolysaccharide (LPS) as a model of sickness behavior, has attracted recent attention. To objectively investigate sickness behavior along with its pain-like behaviors in LPS-treated mice, the behavioral measurement requires accurate methods, which reflects clinical relevance. While reflexive pain response tests have been used for decades for pain assessment, its accuracy and clinical relevance remain problematic. Hence, we used automated home-cage monitoring LABORAS to evaluate spontaneous locomotive behaviors in LPS-induced mice. LPS-treated mice displayed sickness behaviors including pain-like behaviors in automated home-cage monitoring characterized by decreased mobile behaviors (climbing, locomotion, rearing) and increased immobility compared to that of the control group in both short- and long-term locomotive assessments. Here, in short-term measurement, both in the open-field test and automated home-cage monitoring, mice demonstrated impaired locomotive behaviors. We also assessed 24 h long-term locomotor activity in the home-cage system, which profiled the diurnal behaviors of LPS-stimulated mice. The results demonstrated significant behavioral impairment in LPS-stimulated mice compared to the control mice in both light and dark phases. However, the difference is more evident in the dark phase compared to the light phase owing to the nocturnal activity of mice. In addition, the administration of indomethacin as a pharmacological intervention improved sickness behaviors in the open-field test as well as automated home-cage monitoring, confirming that automated home-cage monitoring could be potentially useful in pharmacological screening. Together, our results demonstrate that automated home-cage monitoring could be a feasible alternative to conventional methods, such as the open-field test and combining several behavioral assessments may provide a better understanding of sickness behavior and pain-like behaviors in LPS-treated mice.


Sign in / Sign up

Export Citation Format

Share Document