Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells

Author(s):  
Xinyuan Zhao ◽  
Fengjun Xing ◽  
Yewen Cong ◽  
Yin Zhuang ◽  
Muxi Han ◽  
...  
2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Shashank Hambarde ◽  
Martyn Sharpe ◽  
David Baskin ◽  
Santosh Helekar

Abstract Noninvasive cancer therapy with minimal side effects would be ideal for improving patient outcome in the clinic. We have developed a novel therapy using strong rotating magnets mounted on a helmet. They generate oscillating magnetic fields (OMF) that penetrate through the skull and cover the entire brain. We have demonstrated that OMF can effectively kill patient derived glioblastoma (GBM) cells in cell culture without having cytotoxic effects on cortical neurons and normal human astrocytes (NHA). Exposure of GBM cells to OMF reduced the cell viability by 33% in comparison to sham-treated cells (p< 0.001), while not affecting NHA cell viability. Time lapse video-microscopy for 16 h after OMF exposure showed a marked elevation of mitochondrial reactive oxygen species (ROS), and rapid apoptosis of GBM cells due to activation of caspase 3. Addition of a potent antioxidant vitamin E analog Trolox effectively blocked OMF-induced GBM cell death. Furthermore, OMF significantly potentiated the cytotoxic effect of the pro-oxidant Benzylamine. The results of our studies demonstrate that OMF-induced cell death is mediated by ROS generation. These results demonstrate a potent oncolytic effect on GBM cells that is novel and unrelated to any previously described therapy, including a very different mechanism of action and different technology compared to Optune therapy. The effect is very powerful, and unlike Optune, can be seen within hours after initiation of treatment. We believe that this technology holds great promise for new, effective and nontoxic treatment of glioblastoma.


2021 ◽  
Vol 22 (2) ◽  
pp. 567
Author(s):  
Brixhilda Domi ◽  
Kapil Bhorkar ◽  
Carlos Rumbo ◽  
Labrini Sygellou ◽  
Spyros N. Yannopoulos ◽  
...  

Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200–300 nm for BN-PL and 100–150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mingyan Hu ◽  
Ping Ye ◽  
Hua Liao ◽  
Manhua Chen ◽  
Feiyan Yang

Metformin is a first-line drug for the management of type 2 diabetes. Recent studies suggested cardioprotective effects of metformin against ischemia/reperfusion injury. However, it remains elusive whether metformin provides direct protection against hypoxia/reoxygenation (H/R) injury in cardiomyocytes under normal or hyperglycemic conditions. This study in H9C2 rat cardiomyoblasts was designed to determine cell viability under H/R and high-glucose (HG, 33 mM) conditions and the effects of cotreatment with various concentrations of metformin (0, 1, 5, and 10 mM). We further elucidated molecular mechanisms underlying metformin-induced cytoprotection, especially the possible involvement of AMP-activated protein kinase (AMPK) and Jun NH(2)-terminal kinase (JNK). Results indicated that 5 mM metformin improved cell viability, mitochondrial integrity, and respiratory chain activity under HG and/or H/R (P<0.05). The beneficial effects were associated with reduced levels of reactive oxygen species generation and proinflammatory cytokines (TNF-α, IL-1α, and IL-6) (P<0.05). Metformin enhanced phosphorylation level of AMPK and suppressed HG + H/R induced JNK activation. Inhibitor of AMPK (compound C) or activator of JNK (anisomycin) abolished the cytoprotective effects of metformin. In conclusion, our study demonstrated for the first time that metformin possessed direct cytoprotective effects against HG and H/R injury in cardiac cells via signaling mechanisms involving activation of AMPK and concomitant inhibition of JNK.


Author(s):  
Young Sook Kim ◽  
Heung Joo Yuk ◽  
Dong-Seon Kim

Oxidative stress is a major contributor to muscle aging and loss of muscle tissue. Jakyakgamcho-tang has been used in traditional Eastern medicine to treat muscle pain. Here, we compared various solvent-based Jakyakgamcho-tang extracts in terms of their effects against hydrogen peroxide-induced oxidative stress in murine C2C12 skeletal muscle cells. Total phenolic content and total flavonoid content in 30% ethanol extracts of Jakyakgamcho-tang were higher than those of water extracts of Jakyakgamcho-tang. Ethanol extracts of Jakyakgamcho-tang had stronger antioxidant and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and 2,2&acute;-diphenyl-1-picrylhydrazyl-scavenging activity than water extracts of Jakyakgamcho-tang. The ethanol extract of Jakyakgamcho-tang inhibited peroxide-induced cell viability and intracellular reactive oxygen species generation more effectively than the water extract of Jakyakgamcho-tang in a dose-dependent manner. These results suggest that the ethanol extract of Jakyakgamcho-tang is relatively more efficacious at protecting against oxidative stress-induced muscle cell death because it prevents reactive oxygen species generation in C2C12 cells. Moreover, the current study indicated that the effective dose of the ethanol extract of Jakyakgamcho-tang required to alleviate muscle pain might be lower than that required for Jakyakgamcho-tang.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Sonali Nashine ◽  
Anthony B. Nesburn ◽  
Baruch D. Kuppermann ◽  
Maria Cristina Kenney

Resveratrol is a phytoalexin, stilbenoid compound with antioxidant properties attributable to its bioactive trans-resveratrol content. This study characterized the effects of over-the-counter (OTC) resveratrol nutritional supplements and a HPLC-purified resveratrol formulation, in human transmitochondrial age-related macular degeneration (AMD) retinal pigment epithelial (RPE) patient cell lines. These cell lines, which were created by fusing blood platelets obtained from dry and wet AMD patients with mitochondria-deficient (Rho0) ARPE-19 cells, had identical nuclei (derived from ARPE-19 cells) but different mitochondria that were derived from AMD patients. After resveratrol treatment, the levels of cell viability and reactive oxygen species production were measured. Results demonstrated that treatment with different resveratrol formulations improved cell viability and decreased reactive oxygen species generation in each AMD patient cell line. Although further studies are required to establish the cytoprotective potential of resveratrol under different physiological conditions, this novel study established the positive effects of OTC resveratrol supplements in macular degeneration patient cybrid cell lines in vitro.


2016 ◽  
Vol 31 (5) ◽  
pp. 841-848 ◽  
Author(s):  
Larissa Alexsandra da Silva Neto Trajano ◽  
Camila Luna da Silva ◽  
Simone Nunes de Carvalho ◽  
Erika Cortez ◽  
André Luiz Mencalha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document