Xenogeneic cell-based vaccine therapy for colorectal cancer: Safety, association of clinical effects with vaccine-induced immune responses

2016 ◽  
Vol 83 ◽  
pp. 1247-1252 ◽  
Author(s):  
G.V. Seledtsova ◽  
A.A. Shishkov ◽  
E.A. Kaschenko ◽  
V.I. Seledtsov
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ke-Tao Jin ◽  
Bo Chen ◽  
Yu-Yao Liu ◽  
H uan-Rong Lan ◽  
Jie-Ping Yan

AbstractColorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Besides common therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, novel therapeutic approaches, including immunotherapy, have been an advent in CRC treatment. The immunotherapy approaches try to elicit patients` immune responses against tumor cells to eradicate the tumor. Monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells are two branches of cancer immunotherapy. MAbs demonstrate the great ability to completely recognize cancer cell-surface receptors and blockade proliferative or inhibitory pathways. On the other hand, T cell activation by genetically engineered CAR receptor via the TCR/CD3 and costimulatory domains can induce potent immune responses against specific tumor-associated antigens (TAAs). Both of these approaches have beneficial anti-tumor effects on CRC. Herein, we review the different mAbs against various pathways and their applications in clinical trials, the different types of CAR-T cells, various specific CAR-T cells against TAAs, and their clinical use in CRC treatment.


2007 ◽  
Vol 15 (1-2) ◽  
pp. 5-9
Author(s):  
Attila Fenyvesi

Background: The genetic alterations in colorectal cancer (CRC) progression are determined by two separate pathways, chromosomal and microsatellite instability (MSI). The CRCs with MSI have distinct clinicopathological characteristics with pronounced tumor-associated immune responses. The aim of our study was to investigate the intensity of host immune response in CRC tissue by comparing microsatellite stable (MSS) and instable tumors. Methods: The study was performed on CRC specimens from 28 patients with MSI and compared with 30 MSS tumors. The microsatellite status was evaluated with two markers by PCR and melting point analysis. The immunostaining with anti-CD3 pan-T cell antibody was used to quantify the number of tumor infiltrating lymphocytes. The lymphocytes in peritumoral stromal and the Crohn?s-like peritumoral reaction were counted on H&E slides. Results: No significant differences were found in the average number of lymphocytes in peritumoral stroma and in clinicopathological characteristics of CRCs. The conspicuous Crohn?s-like lymphoid reactions were present in 67.86% of CRCs with MSI versus 26.66% of MSS cases. The CRCs with MSI cases carried significantly higher numbers of tumor infiltrating T-lymphocytes (13.21 versus 7.47) (p<0.0001). Conclusion: The presences of peritumoral Crohn?s-like lymphoid and intraepithelial lymphocytic reaction were intensive markers for MSI in colorectal carcinomas in our study. The peculiar genetic instability in MSI tumors may lead to a continuous production of abnormal peptides, which act as neoantigens. They could induce specific antitumor immune responses effective in limiting tumor growth and spread. Abnormal peptides are potentially promising in immunotherapy advancing and in the design of a vaccine against colorectal tumors with MSI.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A670-A670
Author(s):  
Jonathan Chen ◽  
Karin Pelka ◽  
Matan Hofree ◽  
Marios Giannakis ◽  
Genevieve Boland ◽  
...  

BackgroundImmune responses to cancer are highly variable, with DNA mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. Almost all tumors are infiltrated with immune cells, but the types of immune responses and their effects on tumor growth, metastasis and death, vary greatly between different cancers and individual tumors. Which of the numerous cell subsets in a tumor contribute to the response, how their interactions are regulated, and how they are spatially organized within tumors remains poorly understood.MethodsTo understand the rules governing these varied responses, we transcriptionally profiled 371,223 single cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd treatment-naive patients. We developed a systematic approach to discover cell types, their underlying gene programs, and cellular communities based on single cell RNA-seq (scRNAseq) profiles and applied it to study the distinguishing features of human MMRd and MMRp colorectal cancer. Cellular communities discovered from this analysis were spatially mapped in tissue sections using multiplex RNA in situ hybridization microscopy.ResultsTo understand the basis for differential immune responses in CRC, we first determined and compared the immune cell composition of MMRd and MMRp CRC and normal colon tissue, finding dramatic remodeling between tumor and normal tissue and between MMRd and MMRp tumors, particularly within the myeloid, T cell, and stromal compartments. Among the clusters enriched in MMRd tumors were activated CXCL13+ CD8 T cells. Importantly, gene program co-variation analysis revealed multicellular networks. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage, and an MMRd-enriched immune hub within the tumor, with activated IFNG+ and CXCL13+ T cells together with malignant and myeloid cells expressing T-cell-attracting chemokines (figure 1).ConclusionsOur study provides a rich dataset of cellular states, gene programs and their transformations in tumors across a relatively large cohort of patients with colorectal cancer. Our predictions of several multicellular hubs based on co-variation of gene expression programs, and subsequent spatial localization of two major immune-malignant hubs, organizes a large set of cell states and programs into a smaller number of coordinated networks of cells and processes. Understanding the molecular mechanisms underlying these hubs, and studying their temporal and spatial regulation upon treatment will be critical for advancing cancer therapy.Ethics ApprovalThis study was approved by the DF-HCC institutional review board (protocols 03-189 and 02-240).Abstract 641 Figure 1A coordinated network of CXCL13+ T cells with myeloid and malignant cells expressing ISGs. Image shows a portion of formalin-fixed paraffin-embedded tissue from an MMRd CRC specimen stained with multiplex RNA ISH / IF for PanCK-IF, CD3E-ISH, CXCL10/CXCL11-ISH, CXCL13-ISH, and IFNG-ISH. Note IFNG+ and CXCL13+ cells in proximity to cells expressing the chemokines CXCL10/CXCL11


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4054
Author(s):  
Yan Chen ◽  
Ying-Xuan Chen

A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document