Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH

2013 ◽  
Vol 135 ◽  
pp. 432-439 ◽  
Author(s):  
Suryang Kwak ◽  
Yong-Cheol Park ◽  
Jin-Ho Seo
Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 385-398 ◽  
Author(s):  
Jana Hejnova ◽  
Ulrich Dobrindt ◽  
Radka Nemcova ◽  
Christophe Rusniok ◽  
Alojz Bomba ◽  
...  

Colonization by the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31) has proved to be safe and efficient in the prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants in Czech paediatric clinics over the past three decades. In searching for traits contributing to this beneficial effect related to the gut colonization capacity of the strain, the authors have analysed its genome by DNA–DNA hybridization to E. coli K-12 (MG1655) genomic DNA arrays and to ‘Pathoarrays’, as well as by multiplex PCR, bacterial artificial chromosome (BAC) library cloning and shotgun sequencing. Four hundred and ten E. coli K-12 ORFs were absent from A0 34/86, while 72 out of 456 genes associated with pathogenicity islands of E. coli and Shigella were also detected in E. coli A0 34/86. Furthermore, extraintestinal pathogenic E. coli-related genes involved in iron uptake and adhesion were detected by multiplex PCR, and genes encoding the HlyA and cytotoxic necrotizing factor toxins, together with 21 genes of the uropathogenic E. coli 536 pathogenicity island II, were identified by analysis of 2304 shotgun and 1344 BAC clone sequences of A0 34/86 DNA. Multiple sequence comparisons identified 31 kb of DNA specific for E. coli A0 34/86; some of the genes carried by this DNA may prove to be implicated in the colonization capacity of the strain, enabling it to outcompete pathogens. Among 100 examined BAC clones roughly covering the A0 34/86 genome, one reproducibly conferred on the laboratory strain DH10B an enhanced capacity to persist in the intestine of newborn piglets. Sequencing revealed that this BAC clone carried gene clusters encoding gluconate and mannonate metabolism, adhesion (fim), invasion (ibe) and restriction/modification functions. Hence, the genome of this clinically safe and highly efficient colonizer strain appears to harbour many ‘virulence-associated’ genes. These results highlight the thin line between bacterial ‘virulence’ and ‘fitness' or ‘colonization’ factors, and question the definition of enterobacterial virulence factors.


2002 ◽  
Vol 184 (16) ◽  
pp. 4374-4383 ◽  
Author(s):  
Abel Ferrández ◽  
Andrew C. Hawkins ◽  
Douglas T. Summerfield ◽  
Caroline S. Harwood

ABSTRACT Pseudomonas aeruginosa, a γ-proteobacterium, is motile by means of a single polar flagellum and is chemotactic to a variety of organic compounds and phosphate. P. aeruginosa has multiple homologues of Escherichia coli chemotaxis genes that are organized into five gene clusters. Previously, it was demonstrated that genes in cluster I and cluster V are essential for chemotaxis. A third cluster (cluster II) contains a complete set of che genes, as well as two genes, mcpA and mcpB, encoding methyl-accepting chemotaxis proteins. Mutations were constructed in several of the cluster II che genes and in the mcp genes to examine their possible contributions to P. aeruginosa chemotaxis. A cheB2 mutant was partially impaired in chemotaxis in soft-agar swarm plate assays. Providing cheB2 in trans complemented this defect. Further, overexpression of CheB2 restored chemotaxis to a completely nonchemotactic, cluster I, cheB-deficient strain to near wild-type levels. An mcpA mutant was defective in chemotaxis in media that were low in magnesium. The defect could be relieved by the addition of magnesium to the swarm plate medium. An mcpB mutant was defective in chemotaxis when assayed in dilute rich soft-agar swarm medium or in minimal-medium swarm plates containing any 1 of 60 chemoattractants. The mutant phenotype could be complemented by the addition of mcpB in trans. Overexpression of either McpA or McpB in P. aeruginosa or Escherichia coli resulted in impairment of chemotaxis, and these cells had smooth-swimming phenotypes when observed under the microscope. Expression of P. aeruginosa cheA2, cheB2, or cheW2 in E. coli K-12 completely disrupted wild-type chemotaxis, while expression of cheY2 had no effect. These results indicate that che cluster II genes are expressed in P. aeruginosa and are required for an optimal chemotactic response.


2003 ◽  
Vol 185 (5) ◽  
pp. 1659-1671 ◽  
Author(s):  
Emilisa Frirdich ◽  
Buko Lindner ◽  
Otto Holst ◽  
Chris Whitfield

ABSTRACT The waa gene cluster is responsible for the biosynthesis of the lipopolysaccharide (LPS) core region in Escherichia coli and Salmonella. Homologs of the waaZ gene product are encoded by the waa gene clusters of Salmonella enterica and E. coli strains with the K-12 and R2 core types. Overexpression of WaaZ in E. coli and S. enterica led to a modified LPS structure showing core truncations and (where relevant) to a reduction in the amount of O-polysaccharide side chains. Mass spectrometry and nuclear magnetic resonance spectroscopy were used to determine the predominant LPS structures in an E. coli isolate with an R1 core (waaZ is lacking from the type R1 waa gene cluster) with a copy of the waaZ gene added on a plasmid. Novel truncated LPS structures, lacking up to 3 hexoses from the outer core, resulted from WaaZ overexpression. The truncated molecules also contained a KdoIII residue not normally found in the R1 core.


1999 ◽  
Vol 67 (10) ◽  
pp. 5306-5314 ◽  
Author(s):  
Thomas A. Russo ◽  
Ulrike B. Carlino ◽  
Andrew Mong ◽  
Stephen T. Jodush

ABSTRACT The identification of genes with increased expression in vivo may lead to the identification of novel or unrecognized virulence traits and/or recognition of environmental signals involved in modulating gene expression. Our laboratory is studying an extraintestinal isolate ofEscherichia coli as a model pathogen. We had previously used human urine ex vivo to identify the unrecognized urovirulence genes guaA and argC and to establish that arginine and guanine (or derivatives) were limiting in this body fluid (T. A. Russo et al., Mol. Microbiol. 22:217–229, 1996). In this study, we have continued with this approach and identified three additional genes that have increased expression in human urine relative to Luria-Bertani (LB) medium. Expression of ure1(urine-responsive element) is increased a mean of 47.6-fold in urine but completely suppressed by exogenous glucose. This finding suggests that ure1 is regulated by catabolite repression and that limiting glucose in urine is a regulatory signal. ure1 is present in the E. coli K-12 genome, but its function is unknown. Although disruption of ure1 results in diminished growth in human urine, limiting concentrations of amino acids, nucleosides, or iron (Fe), or changes in osmolarity or pH do not affect the expression of ure1. Therefore, Ure1 appears to have a role independent of the synthesis or uptake of these nutrients and does not appear to be involved in osmoprotection. iroN E. coli is a novel E. coli gene with 77% DNA homology to a catecholate siderophore receptor gene recently identified in Salmonella. Its expression is increased a mean of 27.2-fold in urine and is repressed by exogenous Fe and a urinary pH of 5.0. This finding supports the contention that Fe is a limiting element in urine and that alteration of pH can affect gene expression. It is linked to the P-pilus (prs) and F1C fimbrial (foc) gene clusters on a pathogenicity island and appears to have been acquired by IS1230-mediated horizontal transmission. The homologous iroNE. coli sequence is significantly more prevalent in urinary tract and blood isolates of E. coli compared to fecal isolates. Last, the expression of ArtJ, an arginine periplasmic binding protein, is increased a mean of 16.6-fold in urine. This finding implicates arginine concentrations as limited in urine and, in combination with previous data demonstrating that argC is important for urovirulence, suggests that the ability of E. coli to synthesize or acquire arginine is important for urovirulence.ure1, iroNE. coli , andartJ all have increased expression in human blood and ascites relative to LB medium as well. The identification of these genes increases our understanding of regulatory signals present in human urine, blood, and ascites. Ure1, IroN E. coli , and ArtJ also warrant further evaluation as virulence traits both within and outside the urinary tract.


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


1982 ◽  
Vol 152 (1) ◽  
pp. 81-88
Author(s):  
E H Berglin ◽  
M B Edlund ◽  
G K Nyberg ◽  
J Carlsson

Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the catalase. This inhibition, however, could not fully explain the 100-fold increase in hydrogen peroxide sensitivity of the organism in the presence of L-cysteine. Of other compounds tested only some thiols potentiated the bactericidal effect of hydrogen peroxide. These thiols were effective, however, only at concentrations significantly higher than 0.1 mM. The effect of L-cysteine and L-cystine could be annihilated by the metal ion chelating agent 2,2'-bipyridyl. DNA breakage in E. coli K-12 was demonstrated under conditions where the organisms were killed by hydrogen peroxide.


2004 ◽  
Vol 186 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Elizabeth Yohannes ◽  
D. Michael Barnhart ◽  
Joan L. Slonczewski

ABSTRACT During aerobic growth of Escherichia coli, expression of catabolic enzymes and envelope and periplasmic proteins is regulated by pH. Additional modes of pH regulation were revealed under anaerobiosis. E. coli K-12 strain W3110 was cultured anaerobically in broth medium buffered at pH 5.5 or 8.5 for protein identification on proteomic two-dimensional gels. A total of 32 proteins from anaerobic cultures show pH-dependent expression, and only four of these proteins (DsbA, TnaA, GatY, and HdeA) showed pH regulation in aerated cultures. The levels of 19 proteins were elevated at the high pH; these proteins included metabolic enzymes (DhaKLM, GapA, TnaA, HisC, and HisD), periplasmic proteins (ProX, OppA, DegQ, MalB, and MglB), and stress proteins (DsbA, Tig, and UspA). High-pH induction of the glycolytic enzymes DhaKLM and GapA suggested that there was increased fermentation to acids, which helped neutralize alkalinity. Reporter lac fusion constructs showed base induction of sdaA encoding serine deaminase under anaerobiosis; in addition, the glutamate decarboxylase genes gadA and gadB were induced at the high pH anaerobically but not with aeration. This result is consistent with the hypothesis that there is a connection between the gad system and GabT metabolism of 4-aminobutanoate. On the other hand, 13 other proteins were induced by acid; these proteins included metabolic enzymes (GatY and AckA), periplasmic proteins (TolC, HdeA, and OmpA), and redox enzymes (GuaB, HmpA, and Lpd). The acid induction of NikA (nickel transporter) is of interest because E. coli requires nickel for anaerobic fermentation. The position of the NikA spot coincided with the position of a small unidentified spot whose induction in aerobic cultures was reported previously; thus, NikA appeared to be induced slightly by acid during aeration but showed stronger induction under anaerobic conditions. Overall, anaerobic growth revealed several more pH-regulated proteins; in particular, anaerobiosis enabled induction of several additional catabolic enzymes and sugar transporters at the high pH, at which production of fermentation acids may be advantageous for the cell.


2004 ◽  
Vol 186 (18) ◽  
pp. 6179-6185 ◽  
Author(s):  
Richard A. Lease ◽  
Dorie Smith ◽  
Kathleen McDonough ◽  
Marlene Belfort

ABSTRACT DsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (σs), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E. coli. Here, by using transcription profiling via DNA arrays, we have identified genes induced by DsrA. Steady-state levels of mRNAs from many genes increased with DsrA overproduction, including multiple acid resistance genes of E. coli. Quantitative primer extension analysis verified the induction of individual acid resistance genes in the hdeAB, gadAX, and gadBC operons. E. coli K-12 strains, as well as pathogenic E. coli O157:H7, exhibited compromised acid resistance in dsrA mutants. Conversely, overproduction of DsrA from a plasmid rendered the acid-sensitive dsrA mutant extremely acid resistant. Thus, DsrA RNA plays a regulatory role in acid resistance. Whether DsrA targets acid resistance genes directly by base pairing or indirectly via perturbation of RpoS and/or H-NS is not known, but in either event, our results suggest that DsrA RNA may enhance the virulence of pathogenic E. coli.


2001 ◽  
Vol 69 (2) ◽  
pp. 937-948 ◽  
Author(s):  
Lila Lalioui ◽  
Chantal Le Bouguénec

ABSTRACT We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI IAL862, we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenicafa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negativeE. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI IIAL862), which appeared to be similar in size and genetic organization to PAI IAL862 and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.


Sign in / Sign up

Export Citation Format

Share Document