Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier

2016 ◽  
Vol 216 ◽  
pp. 1004-1013 ◽  
Author(s):  
Yun-Jie Ruan ◽  
Ya-Le Deng ◽  
Xi-Shan Guo ◽  
Michael B. Timmons ◽  
Hui-Feng Lu ◽  
...  
2015 ◽  
Vol 71 (7) ◽  
pp. 1019-1025 ◽  
Author(s):  
Chuanfu Wu ◽  
Danqi Tang ◽  
Qunhui Wang ◽  
Juan Wang ◽  
Jianguo Liu ◽  
...  

A suitable carbon source is significant for biological nitrate removal from groundwater. In this study, slow-release carbon sources containing polylactic acid (PLA) and starch at 8:2, 7:3, 6:4, 5:5, 4:6, and 3:7 ratios were prepared using a blending and fusing technique. The PLA/starch blend was then used as a solid carbon source for biological nitrate removal. The carbon release rate of PLA/starch was found to increase with increased starch content in leaching experiments. PLA/starch at 5:5 mass ratio was found to have the highest denitrification performance and organic carbon consumption efficiency in semi-continuous denitrification experiments, and was also revealed to support complete denitrification at 50 mg-N/L influent nitrate concentration in continuous experiments. The effluent nitrate concentration was <2 mg NO3–-N/L, which met the national standard (GB 14848-93) for groundwater. Scanning electron microscopy results further showed that the surface roughness of PLA/starch increased with prolonged experimental time, which may be conducive to microorganism attachment. Therefore, PLA/starch was a suitable carbon source and biofilm carrier for groundwater remediation.


2010 ◽  
Vol 113-116 ◽  
pp. 1349-1352
Author(s):  
Xiang Yu ◽  
Bai Chun Huang ◽  
Li Jun Xing ◽  
Zhi Jun Xu ◽  
Xu Ming Wang

Removal of nitrate from groundwater was investigated using biodegradable snack ware (BSW) as carbon source and biofilm carrier. The experimental results show that low temperatures affect significantly denitrification efficiency using BSW as carbon source. Denitrification rates at 5 0C and 10 0C were 5 % and 13 % of rates observed at 30 0C, respectively. Denitrification supported by BSW could tolerate a relatively wide range of variation of pH and DO in the influent. Nitrite concentration in the effluent had little difference when pH value ranged from 4.5 to 8.5 in the influent. When DO concentration was between 0.9 and 5.0 mg/L, NO2-N concentration in the treated water never exceeded 0.15mg/L.


2014 ◽  
Vol 665 ◽  
pp. 469-478
Author(s):  
Guo Zhi Luo ◽  
Wen Jing Sun ◽  
Qian Liu ◽  
Yu Hu ◽  
Hong Xin Tan

Biodegradable polymer pellets (BDPs) can act as biofilm carrier and as water insoluble carbon source for denitrification simultaneously, which is accessible only by enzymatic attack. It is expected that organic carbon source for heterotrophic denitrification by using BDPs will not be overdose or shortage. The current batch experiment was conducted to examine if the PBS would supply enough carbon source to the denitrification with high concentration nitrate. The initial nitrate nitrogen (NO3--N) concentrations were 100 mg NO3-N/l (T1), 300 mg NO3-N/l (T2) and 500 mg NO3-N/l (T3) respectively. The results showed that the initial nitrate concentrations have significant effects on the removal of nitrate nitrogen and total nitrogen (TN) using PBS as carbon source. The efficiencies of removal of nitrate and TN in T1 were almost 100%. The amounts of NO3--N and TN that were removed in T2 were 286.60±6.66 mg NO3-N/g PBS (in dry wt), which was significantly higher than that of T1 and T3. Accumulation of ammonium and nitrite were observed in T2 and T3. The morphological changes and the weight losses observed for PBS granules indicated that good degradation occurred in static denitrification environments. But the insufficient of carbon sources for denitrification in T2 and T3 was observed.


2009 ◽  
Vol 60 (2) ◽  
pp. 517-524 ◽  
Author(s):  
S. Kavitha ◽  
R. Selvakumar ◽  
M. Sathishkumar ◽  
K. Swaminathan ◽  
P. Lakshmanaperumalsamy ◽  
...  

Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L−1. The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L−1 of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182±8.24 × 104 CFU mL−1) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460±5.92 mg L−1 of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23±0.41 mg L−1) in pilot scale treatment process was found to be below the permissible limit of WHO.


Sign in / Sign up

Export Citation Format

Share Document