Comparison of denitrification performances using PLA/starch with different mass ratios as carbon source

2015 ◽  
Vol 71 (7) ◽  
pp. 1019-1025 ◽  
Author(s):  
Chuanfu Wu ◽  
Danqi Tang ◽  
Qunhui Wang ◽  
Juan Wang ◽  
Jianguo Liu ◽  
...  

A suitable carbon source is significant for biological nitrate removal from groundwater. In this study, slow-release carbon sources containing polylactic acid (PLA) and starch at 8:2, 7:3, 6:4, 5:5, 4:6, and 3:7 ratios were prepared using a blending and fusing technique. The PLA/starch blend was then used as a solid carbon source for biological nitrate removal. The carbon release rate of PLA/starch was found to increase with increased starch content in leaching experiments. PLA/starch at 5:5 mass ratio was found to have the highest denitrification performance and organic carbon consumption efficiency in semi-continuous denitrification experiments, and was also revealed to support complete denitrification at 50 mg-N/L influent nitrate concentration in continuous experiments. The effluent nitrate concentration was <2 mg NO3–-N/L, which met the national standard (GB 14848-93) for groundwater. Scanning electron microscopy results further showed that the surface roughness of PLA/starch increased with prolonged experimental time, which may be conducive to microorganism attachment. Therefore, PLA/starch was a suitable carbon source and biofilm carrier for groundwater remediation.

1998 ◽  
Vol 38 (6) ◽  
pp. 237-243 ◽  
Author(s):  
A. Mohseni-Bandpi ◽  
D. J. Elliott

A pilot scale rotating biological contactor (RBC) was used to investigate the removal of nitrate-nitrogen from groundwater using three different carbon sources, i.e., methanol, ethanol and acetic acid. Optimum carbon sources to influent nitrate-nitrogen ratio were established by varying the influent concentration of carbon sources. The optimum ratio of methanol, ethanol and acetic acid to nitrate-nitrogen ratios were found to be 2.9, 2.35 and 4.3 respectively. The nitrate-nitrogen removal efficiency averaged 93, 91 and 98 for methanol, ethanol and acetic acid respectively at a loading rate of 76 mg/m2.h. The results of this study show that the acetic acid is the most efficient carbon source for removal of nitrate-nitrogen. Effluent nitrite-nitrogen concentration was minimum for acetic acid as compared with ethanol and methanol. The effluent contained minimum suspended solids and turbidity for methanol as a carbon source. The results of this study indicate that biological nitrate removal using a RBC is a reliable and stable system under all the three carbon sources. The denitrified water in all cases requires some post treatment to oxidise the residual carbon source and remove biomass before distribution.


2012 ◽  
Vol 65 (9) ◽  
pp. 1696-1704 ◽  
Author(s):  
Jianmei Zhang ◽  
Chuanping Feng ◽  
Siqi Hong ◽  
Huiling Hao ◽  
Yingnan Yang

The present study was conducted to compare the behavior of wheat straw, sawdust and biodegradable plastic (BP) as potential carbon sources for denitrification in groundwater remediation. The results showed that a greater amount of nitrogen compounds were released from wheat straw and sawdust than from BP in leaching experiments. In batch experiments, BP showed higher nitrate removal efficiency and longer service life than wheat straw and sawdust, which illustrated that BP is the most appropriate carbon source for stimulation of denitrification activity. In column experiments, BP was able to support complete denitrification at influent nitrate concentrations of 50, 60, 70, 80, and 90 mg NO3−-N/L, showing corresponding denitrification rates of 0.12, 0.14, 0.17, 0.19, and 0.22 mg NO3−-N.L−1.d−1.g−1, respectively. These findings indicate that BP is applicable for use as a carbon source for nitrate-polluted groundwater remediation.


2014 ◽  
Vol 665 ◽  
pp. 469-478
Author(s):  
Guo Zhi Luo ◽  
Wen Jing Sun ◽  
Qian Liu ◽  
Yu Hu ◽  
Hong Xin Tan

Biodegradable polymer pellets (BDPs) can act as biofilm carrier and as water insoluble carbon source for denitrification simultaneously, which is accessible only by enzymatic attack. It is expected that organic carbon source for heterotrophic denitrification by using BDPs will not be overdose or shortage. The current batch experiment was conducted to examine if the PBS would supply enough carbon source to the denitrification with high concentration nitrate. The initial nitrate nitrogen (NO3--N) concentrations were 100 mg NO3-N/l (T1), 300 mg NO3-N/l (T2) and 500 mg NO3-N/l (T3) respectively. The results showed that the initial nitrate concentrations have significant effects on the removal of nitrate nitrogen and total nitrogen (TN) using PBS as carbon source. The efficiencies of removal of nitrate and TN in T1 were almost 100%. The amounts of NO3--N and TN that were removed in T2 were 286.60±6.66 mg NO3-N/g PBS (in dry wt), which was significantly higher than that of T1 and T3. Accumulation of ammonium and nitrite were observed in T2 and T3. The morphological changes and the weight losses observed for PBS granules indicated that good degradation occurred in static denitrification environments. But the insufficient of carbon sources for denitrification in T2 and T3 was observed.


2009 ◽  
Vol 60 (2) ◽  
pp. 517-524 ◽  
Author(s):  
S. Kavitha ◽  
R. Selvakumar ◽  
M. Sathishkumar ◽  
K. Swaminathan ◽  
P. Lakshmanaperumalsamy ◽  
...  

Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L−1. The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L−1 of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182±8.24 × 104 CFU mL−1) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460±5.92 mg L−1 of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23±0.41 mg L−1) in pilot scale treatment process was found to be below the permissible limit of WHO.


2010 ◽  
Vol 113-116 ◽  
pp. 1349-1352
Author(s):  
Xiang Yu ◽  
Bai Chun Huang ◽  
Li Jun Xing ◽  
Zhi Jun Xu ◽  
Xu Ming Wang

Removal of nitrate from groundwater was investigated using biodegradable snack ware (BSW) as carbon source and biofilm carrier. The experimental results show that low temperatures affect significantly denitrification efficiency using BSW as carbon source. Denitrification rates at 5 0C and 10 0C were 5 % and 13 % of rates observed at 30 0C, respectively. Denitrification supported by BSW could tolerate a relatively wide range of variation of pH and DO in the influent. Nitrite concentration in the effluent had little difference when pH value ranged from 4.5 to 8.5 in the influent. When DO concentration was between 0.9 and 5.0 mg/L, NO2-N concentration in the treated water never exceeded 0.15mg/L.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1077-1086 ◽  
Author(s):  
U. Nyberg ◽  
H. Aspegren ◽  
B. Andersson ◽  
J. la C. Jansen ◽  
I.S. Villadsen

In Sweden many advanced sewage treatment plants for BOD and phosphorus removal have to be extended with nitrogen removal. Due to existing plant configuration and wastewater composition, denitrification with supply of an external carbon source can be a cost-effective solution in many cases. At the Klagshamn wastewater treatment plant in Malmo investigations for extensive nitrogen removal have been made in a single-sludge system with pre-precipitation and post-denitrification where methanol was added for denitrification. Results from the tests showed that a high level of nitrogen removal can be reached, and that the process was stable and easy to operate. The process application gave less supplementary cost for an extended nitrogen removal than for upgrading the plant with larger basin volumes. In order to examine the purification performance caused by the addition of methanol, the starting period was followed extensively with online nitrate sensors and daily composite samples. The development of the denitrif ication capacity of the sludge with methanol and acetate as carbon sources was followed and microbiological changes were examined microscopically. Complete denitrification was obtained after approximately one month at 10°C. The denitrification capacity of the sludge with methanol reached that of acetate after about the same time. The microscopic examination revealed a growing population of budding and/or appendaged bacteria, presumably Hyphomicrobium spp, reaching a stable maximum at the time when optimal nitrate removal occurred.


2014 ◽  
Vol 14 (3) ◽  
pp. 276
Author(s):  
Subhankar Basu ◽  
Sakshi Verma ◽  
Ravi Karan Singh ◽  
Vidya S. Batra ◽  
Malini Balakrishnan

2014 ◽  
Vol 1073-1076 ◽  
pp. 779-783
Author(s):  
Patience Awhavbera ◽  
Lian Fang Zhao

External carbon sources provide additional nutrients that improve the efficiency of nitrate removal in constructed wetlands. Typha angustifolia L. were planted in four vertical subsurface-flow constructed wetlands. Different external carbon sources were fed into the columns, to investigate and compare their treatment of nitrate in synthetic wastewater, with initial influent C/N ratio of 1:1. Wetland A (WA) with 50g wheat straw as external carbon source, wetland B (WB) with 50g woodchips, wetland C (WC) with additional 10mg/L glucose and wetland D (WD) without external carbon source to serve as the control, were used in the lab-scale experimental study. WA, WB, WC and WD within a period of 24 days, cumulatively removed 109.38mg/L, 93.75mg/L, 85.14mg/L, and 64.01mg/L nitrate, respectively, from the influent. The nitrate-nitrogen (NO3–N) removal efficiency as aided by the external carbon sources was in the order: wheat straw > woodchips > glucose > control. Wheat straw treated 93% NO3–N, woodchips 78%, glucose 72% and the control 53%. The results indicate that WA, WB and WC outperformed the control system, due to the additional carbon sources. In general, the wheat straw had a better performance than wood chips and glucose. Thus, wheat straw as low cost biological waste product is recommended for the treatment of nitrate in wetlands.


2016 ◽  
Vol 166 ◽  
pp. 407-413 ◽  
Author(s):  
Haowei Zhang ◽  
Jianguo Jiang ◽  
Menglu Li ◽  
Feng Yan ◽  
Changxiu Gong ◽  
...  

2011 ◽  
Vol 63 (11) ◽  
pp. 2700-2706 ◽  
Author(s):  
Seyyed Ebrahim Hashemi ◽  
Manouchehr Heidarpour ◽  
Behrouz Mostafazadeh-Fard

Agricultural fields have been frequently identified as major contributors of nitrate leaching into surface and ground waters. Tile drains can act as direct pathways, transferring leached nitrate to surface water. Bioreactor filters are useful for the removal of nitrate from drainage waters; however, these filters require an external carbon supply to sustain denitrification. In this study, four organic carbon sources including wood, barley straw, rice husks, and date palm leaf, were used to enhance denitrification and the effects of water velocity and influent nitrate concentration on the nitrate removal were evaluated. Cumulative nitrate removal was highest for the date palm leaf treatments and was lowest for the wood treatments. The effects were in decreasing order for date palm leaf, barley straw, rice husks, and wood, respectively. The performance of the biofilters improved with increasing influent nitrate concentration and decreasing water velocity, allowing for high nitrate removal rates to be achieved. The results showed that all of the treatments had reduced the effluent nitrate concentrations below the USEPA maximum contaminant level for drinking water of 45 mg L−1 nitrate at the end of the study.


Sign in / Sign up

Export Citation Format

Share Document