scholarly journals Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants

2018 ◽  
Vol 257 ◽  
pp. 30-38 ◽  
Author(s):  
Judit Martín Juárez ◽  
Elena Riol Pastor ◽  
José M. Fernández Sevilla ◽  
Raúl Muñoz Torre ◽  
Pedro A. García-Encina ◽  
...  
2020 ◽  
Vol 50 ◽  
pp. 101972
Author(s):  
Judit Martín Juárez ◽  
Jelena Vladic ◽  
Silvia Bolado Rodríguez ◽  
Senka Vidovic

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


2015 ◽  
Vol 787 ◽  
pp. 803-808 ◽  
Author(s):  
A. Deepanraj ◽  
S. Vijayalakshmi ◽  
J. Ranjitha

The present research paper describes about the anaerobic digestion of vegetable (Banana, Cauliflower, potato, and sweet potato) and flower wastes (Rose, sambangi, gulmohar, marigold, golden shower tree, silk tree mimosa) in a 1L capacity of anaerobic digestor using pig manure as an inoculums. The digester was operated in the ratio of 1:1 of substrate to inoculums at RT. The substrate concentrations are varied such as 5%, 7%, and 10% was used and amount of gas produced was analysed using digital pressure gauge. The results obtained showed that, marigold flower had given higher yield of biogas than vegetable wastes and the digestion period was less. The average biogas production potential of withered flowers was observed as 14.36 g/kg in 5 days, where in case of vegetable wastes it was 10.0234 g/kg in 6 days. The study showed that flowers which are available in abundant in India is thrown away within a day, in the environment. These feedstocks are good feed stock for the production of biogas. The generation of biogas from flowers and vegetable waste upholds the concept of waste to wealth in enhancing sustainability of development. The future research work is mainly focused on the characterization of the main component present in the bio-gas using sophisticated instruments.


Author(s):  
U. A. Adekola ◽  
I. Eiroboyi ◽  
Y. Yerima ◽  
T. E. B. Akinmoji ◽  
L. O. Uti

The need for an environmentally friendly energy source in the world has led to major diversification in renewable energy. Biogas provides a renewable energy source that will replace fossil fuel inevitably. The experiment was carried out using a self-designed laboratory-scale anaerobic biogas digester. The study was carried out at room temperature from 25 - 31°C for 20 days using corn stalk as the main substrate while Pig manure and eggshell were used as co-substrates. The findings showed that the biogas produced from the sample containing a blend of corn stalk, Pig manure, and eggshell resulted in higher biogas volume than the sample containing corn stalk and eggshell, corn stalk, and pig manure as well as the sample containing only corn stalk. This implies that the use of the corn stalk blend is a source of renewable energy. Thus, ensuring the sustainability of biogas production in the future.


2001 ◽  
Vol 44 (9) ◽  
pp. 269-275 ◽  
Author(s):  
I. Edeogu ◽  
J. Feddes ◽  
R. Coleman ◽  
J. Leonard

The effects of agitation, liquid-only manure, depth and time on odour emission rates were investigated. Manure storage tanks were filled to incremental depths every two weeks. At each depth odour samples were collected twice. The second sample was collected seven days after the first. Odour concentration was measured with an olfactometer. Three different pig-manure treatments were investigated. In one treatment, slurry manure in a storage tank was agitated before and during odour sampling. In a second treatment, the settlable solids in manure were removed gravimetrically over 24 hours and liquid manure was pumped to a storage tank. In the third treatment (control), odour samples were collected from unseparated and undisturbed slurry manure. Overall, the odour emission rates in the agitated manure treatment ranged between 0.39 and 1.02 ou s−1 m−2, increased with depth and decreased with time, i.e. after seven days at each depth. In the liquid-only manure treatment, the emission rates ranged between 0.09 and 0.69 ou s−1 m−2, increased with depth but the effect of time was not evident. In the control treatment, the emission rates ranged between 0.20 and 0.66 ou s−1 m−2 and increased with depth on the first odour sampling day but decreased with depth on the second sampling day.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2015 ◽  
Vol 1 (3) ◽  
pp. 195-214 ◽  
Author(s):  
M. Roffeis ◽  
B. Muys ◽  
J. Almeida ◽  
E. Mathijs ◽  
W.M.J. Achten ◽  
...  

The largest portion of a product’s environmental impacts and costs of manufacturing and use results from decisions taken in the conceptual design phase long before its market entry. To foster sustainable production patterns, applying life cycle assessment in the early product development stage is gaining importance. Following recent scientific studies on using dipteran fly species for waste management, this paper presents an assessment of two insect-based manure treatment systems. Considering the necessity of manure treatment in regions with concentrated animal operations, reducing excess manure volumes with the means of insects presents a potentially convenient method to combine waste reduction and nutrient recovery. An analytical comparison of rearing houseflies on fresh and pre-treated pig manure is reported with reference to agricultural land occupation, water and fossil depletion potential. Based on ex-ante modelled industrial scale rearing systems, the driving factors of performance and environmentally sensitive aspects of the rearing process have been assessed. Expressed per kg manure dry matter reduction, the estimated agricultural land occupation varied between 1.4 and 2.7 m2yr, fossil depletion potential ranged from 1.9 to 3.4 kgoil eq and the obtained water depletion potential was calculated from 36.4 to 65.6 m3. System improvement potential was identified for heating related energy usage and water consumption. The geographical context and the utility of the co-products, i.e. residue substrates and insect products, were determined as influential variables to the application potential of this novel manure treatment concept. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such a system and provide guidance for future research and development activities.


2012 ◽  
Vol 105 ◽  
pp. 15-23 ◽  
Author(s):  
Tereza Nolan ◽  
Shane M. Troy ◽  
Stephen Gilkinson ◽  
Peter Frost ◽  
Sihuang Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document