Production of Bio Gas from Vegetable and Flowers Wastes Using Anaerobic Digestion

2015 ◽  
Vol 787 ◽  
pp. 803-808 ◽  
Author(s):  
A. Deepanraj ◽  
S. Vijayalakshmi ◽  
J. Ranjitha

The present research paper describes about the anaerobic digestion of vegetable (Banana, Cauliflower, potato, and sweet potato) and flower wastes (Rose, sambangi, gulmohar, marigold, golden shower tree, silk tree mimosa) in a 1L capacity of anaerobic digestor using pig manure as an inoculums. The digester was operated in the ratio of 1:1 of substrate to inoculums at RT. The substrate concentrations are varied such as 5%, 7%, and 10% was used and amount of gas produced was analysed using digital pressure gauge. The results obtained showed that, marigold flower had given higher yield of biogas than vegetable wastes and the digestion period was less. The average biogas production potential of withered flowers was observed as 14.36 g/kg in 5 days, where in case of vegetable wastes it was 10.0234 g/kg in 6 days. The study showed that flowers which are available in abundant in India is thrown away within a day, in the environment. These feedstocks are good feed stock for the production of biogas. The generation of biogas from flowers and vegetable waste upholds the concept of waste to wealth in enhancing sustainability of development. The future research work is mainly focused on the characterization of the main component present in the bio-gas using sophisticated instruments.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2014 ◽  
Vol 895 ◽  
pp. 147-150 ◽  
Author(s):  
Nur Ain Ibrahim ◽  
Noriean Azraaie ◽  
Nurul Aimi Mohd Zainul Abidin ◽  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
...  

The main component in natural fibre is cellulose (C6H10O5)n. Cellulose from agricultural by-product is abundant, low cost, eco-friendly, biodegradable, and renewable. This research work was prepared alpha cellulose from pineapple leaf fibre (PALF), which obtained from the leaves of pineapple plant, Ananas comosus belonged to the family Bromeliaceae. The treated and untreated samples were characterized using X-ray diffraction (XRD).


2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


2020 ◽  
Vol 323 ◽  
pp. 01017
Author(s):  
Devid Falliano ◽  
Dario De Domenico ◽  
Salvatore Quattrocchi ◽  
Paolo Cosenza ◽  
Giuseppe Ricciardi ◽  
...  

This contribution focuses on the design and the characterization of innovative mix designs of high consistency mortars with biochar additions in different percentage with respect to the cement weight. Biochar is a by-product material that gives the cementitious mix a sustainable connotation from an environmental point of view. The mix designs presented here are characterized by a good dimensional stability in the fresh state, peculiarity that gives them the possibility to be extruded and so, to be used in automated construction processes. In addition to the mechanical properties (flexural and compressive strength), the assessment of the CO2 emission of representative mixes is presented. Different biochar content and maximum diameter of the aggregate are studied, obtaining interesting indications on these parameters to optimize mechanical properties. Finally, on the basis of the CO2 emission assessment, certain venues for future research work to minimize CO2 emissions are reported.


2021 ◽  
Vol 17 (4) ◽  
pp. 250-256
Author(s):  
M. Haruna ◽  
O.R. Momoh ◽  
S. Bilal

Biomass is being looked upon as one of the promising renewable energy sources for the future, with growing interest in microalgae conversion into biogas through anaerobic digestion. Recently, the ability of microalgae to treat waste water has doubled its potentials material today. However, in spite of the progress made in that regards, there are still challenges of algae conversion to biofuel, due to the presence of complex cell wall in some algae. Cell wall inhibits bacteria growth during degradation. In this research work 10 grams of Microcoleous vaginatus was treated in an oven at varying temperatures of 70, 75 and 80 oC for an hour, out of which 4 g was measured into 250 ml serum bottle for digestion at mesophilic temperature of 37 oC. Based on the results of proximate analysis, 69%increase in carbohydrate was attained with 72.7 – 148% reduction in moisture content. The biogas yield of untreated sample was 4.36 mLg−1 VS, while, pretreated samples at 70, 75 and 80 ℃ produced 8.39, 9.07 and 9.38 mLg−1VS (volatile solid) of biogas. This  corresponds to 92, 108 and 115% higher than that of untreated samples. However, thermal treatment of M. vaginatus prior to digestion show positive effect on carbohydrate extraction and enhanced biogas and methane yield as well. Therefore, this makes the substrate a good feedstock for biogas production. Keywords: Biomass, pretreatment, thermal, anaerobic digestion, degradation, Microcoleous vaginatus.


2014 ◽  
Vol 3 (2) ◽  
pp. 454-458
Author(s):  
László Sallai

The research work presented proposes the study of the impact for the qualitative and the quantitative property of the biogas production by the co-fermentation of the bio-fuel industrial by-products and the dangerous liquid pig manure of the concentrated stock of the big pig farms. The energetic utilization of these materials means more profitable technology for the bio-fuel industry with a longer product course, bigger income for the agricultural enterprises selling the electrical energy, the heat energy, getting support for the demolition of the dangerous materials, savings in the replacement of the plant nutrition with the utilization of the bio-manure, increases the performance of the plant production, making harmless the dung which means a big environmental load. Because of the profitability of bio-energy utilization depends on the local conditions it is necessary to do experiments to try the available composition of organic wastes in the ratio of the formation in advance. We have to investigate the different ways of technology and recipe of basic and by-products to increase the production.


2010 ◽  
Vol 175 (1-3) ◽  
pp. 740-746 ◽  
Author(s):  
Ornella Francioso ◽  
Maria Teresa Rodriguez-Estrada ◽  
Daniela Montecchio ◽  
Cesare Salomoni ◽  
Armando Caputo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document